三阶像差
参考Donald Dilworth《Lens Design Automatic and quasi-autonomous computational methods and techniques》书中第十章
初始结构透镜为C10L1,其扩展名为.RLE。选择保存路径为C:\Synopsys\Dbook\。
\E(Negt7
在CW窗口键入:SYNOPSYS AI>FETCH C10L1,并点击“Enter”键。然后点击PAD按钮
得到二维图:
%4=r .9
%`4\ 8H` AHo4%
5
图1镜头具有校正较好的像差
使用THIRD命令请求三阶像差:
镜头优化代码:
IL]Js W PANT !参数输入 _d[4EY
VLIST RAD ALL !改变所有表面半径;RAD变量不用于平面; A~@u#]]<n
VLIST TH ALL !改变所有表面厚度,包括玻璃厚度和空气间隙 E*sQ|" g
VLIST GLM 1 3 6 8 9 !改变表面1,3,6,8,9的玻璃模型 dR9[K4`p/
END !以END结束 m@Q%)sc)
AANT !像差输入 !OCb^y
M 1 1 A FNUM !控制镜头F数为1;1-目标值,1-权重,A-添加,FNUM-F数 !08\w@
M 7.8 1 A BACK !控制镜头后焦距为7.8;7.8-目标值,1-权重,A-添加,BACK-后焦距(最后两表面间距离) A-&'/IHR"B
M 0 1 A DELF !校正镜头的近轴离焦量为0;0-目标值,1-权重,A-添加,DELF-实际物距的近轴离焦量 8]`LRzM
M 0 1 A SA3 !校正镜头的三阶球差值为0;SA3-三阶球差 SHAC(3o/e
M 0 1 A CO3 !校正镜头的三阶彗差值为0; QY^v*+lr\
M 0 1 A TI3 !校正镜头的子午像散值为0; 7;8#iS/
M 0 1 A SI3 !校正镜头的弧矢像散值为0; kKFhbHUZa
M 0 1 A PETZ !校正镜头的场曲值为0;PETZ-佩兹伐场曲; yUyx&Y/
M 0 1 A DI3 !校正镜头的畸变值为0; )y .1}R2[
M 0 1 A PAC !校正镜头的初级轴向色差为0; sTb@nrRxH
M 0 1 A SAC !校正镜头的二级轴向色差为0; )B!64'|M
M 0 1 A PLC !校正镜头的初级横向色差为0; -4=\uvYh
M 0 1 A SLC !校正镜头的二级横向色差为0; 7 {n>0@_
END !以END结束 RT~6 #Caf
SNAP !每迭代一次PAD更新一次;SNAP-设置PAD更新频率 vNA~EV02
SYNO 30 !迭代次数为30次 ,&q
Q[i
e8Y;~OAj[
运行优化宏,镜头变得太糟糕了,如图2所示。光扇图的比例比图1大25倍。
>.76<fni 图2 校正三阶像差接近0的镜头
再次使用THIRD命令请求三阶像差:
)HL[_WfY 与初始镜头像差相比,优化后的三阶像差非常小。但是初始镜头的三阶像差较大,镜头结构也越好。
O-N@HZC Z8vR/
经验:大多数镜头具有高阶像差,所有像差必须适当的平衡。在像差平衡方面,不要妄加猜测像差项。我们在镜头设计时,主要关心两件事:图像清晰吗? 并且是否在正确的位置? t0"2Si
h{Zd, 9H
由于镜头制造不当时,三阶像差变化最快,所以为了保持偏差变小,需降低公差灵敏度。可在程序的AANT文件中输入八个三阶量 SAT,COT,ACD,ACT,ECD,ECT,ESA 和 ECO。 /SvB
w>gQ
如果这八个三阶量很小,则公差往往更宽松。 [b?[LK}.
8rNRQOXOa }vXf}2C