采用matlab编程,其主函数如下,可以模拟各阶的zernike多项式: &6/%kkv
%Display the Zernike function Z(n=5,m=1) -`Q}tg>cT
clc SX+4HJB
clear @KA1"Wb_
a=5;%%%%%%%%%%Z的阶数下标 %`+'v_iu
b=1;%%%%%%%%%%Z的阶数的上标 x@m<Ym-
x = -1:0.01:1; wbi3lH:;
[X,Y] = meshgrid(x,x); Qn.[{rw
[theta,r] = cart2pol(X,Y); QrC/ssf}
idx = r<=1; VNj@5s
z = nan(size(X)); ,H39V+Y*
z(idx) = zernfun(a,b,r(idx),theta(idx)); ru{f]|
figure(1) BS7J#8cu
pcolor(x,x,z), shading interp *QH[,F`I
axis square, colorbar ^.vmF>$+I
xlabel('X'); 8a>SC$8"
ylabel('Y'); v"RiPHLT
title(['Zernike function Z^a_b','(r,\theta)']) ~;unpym'
figure(2) kXwi{P3D$
mesh(x,x,z) J?%}=_fsa
xlabel('X'); 7tgFDLA
ylabel('Y'); S;=_;&68?
title(['Zernike function Z^a_b','(r,\theta)'])