从1952年第一台数控机床在美国问世,至今已有40多年的历史,计算机数控(CNC)从70年代中期出现,到现在也已有20多年了,数控技术日趋成熟。特别是近几年来微型计算机、微电子工业及电力电子工业的迅速发展,微型计算机与CNC技术的紧密结合,使得开发和生产CNC系统的技术被越来越多的自动化装备生产厂所掌握。因此,就当今全世界范围来说,CNC技术已经不再被少数几个国家的几个CNC系统生产厂所垄断。到80年代末,几乎每个工业发达的国家都有了自己的数控设备生产厂,生产满足各自国家数控机床及其他机械装备所需要的数控系统。甚至很多大型的数控机床生产厂都有自己的产品,并部分出售数控系统。因此,CNC系统生产厂之间的竞争为激烈,数控技术的发展进入了新的阶段。 jlItPdCv
S~hNSw(-
当代数控技术的发展具有下述特点: c8A
//
fDf:Jec`[
1.广泛地应用微机资源 U)2\=%8
/_v@YB!0
近年来被称为个人计算机(PC)的微型计算机发展很快,大规模集成电路制造技术的高速发速,使得PC的硬件结构做得很小。主CPU的运行速度越来越高。IPC386的主频是33MHz,IPC486、586的主频可达50~120MHz,新近Intel奔腾处理器(Pentium),主频已达450MHz。存储器容量也很大,体积很小,由于是大批量生产,使成本下降,可靠性提高。 VUk2pEGO.
nI&Tr_"tm
在软件方面,操作系统的发展,特别是Windows的应用,使得PC的操作更为简便直观。CAD/CAM的软件大量地由小型机、工作站向PC移植,三维图显示及工艺数据库在PC上建立。再加上PC的开放性,吸引大量技术人员投入了软件的开发,使得PC的软件资源极为丰富。 ;a2TONW
smJ%^'x
因此,更好地利用PC的软、硬件资源,就成为各国数控设备生产厂发展CNC系统十分重要的一种方法。1992~1993年,首先是在美国及欧洲的一些小型的数控设备厂推出,例如美国的ANILAN公司推出的1100、1200、1400系列,意大利FIDIA公司的10/20/30系列,都采用了PC作为基板来开发自己的数控系统。现在连日本FANUC、三菱公司,德国的SIEMENS公司这些以生产专用CNC设备著称的公司,也都把采用PC资源,作为其发展的一个重要方向。他们都强调自己系统的“开放”。日本FANUC公司把采用PC的CNC系统称之为开放型CNC系统,有150、160、180及210等系列,并正发展一种将FANUC智能终端(一种与IBM PC兼容的平板式计算机)通过高速光缆与CNC装置连接的模式。 ):1NeJOFF
?Yxk1Y4ig)
我国中国珠峰数控公司“八五”攻关成果“中华Ⅰ型(CME988)”也采用PC作为主控板,使该系统能充分利用PC的资源,跟随PC的发展而升级。 -W2 !_
r\Zz=~![<
2.小型化以满足机电一体化的要求 s#>Bwn&b)
IZ"d s=w
随着微电子技术的发展,大规模集成电路的集成度越来越高,体积越来越小。数控设备厂采用超大规模集成电路并采用表面安装工艺(SMT),实现了三维立体装配,将整个CNC装置做得很小,以适应机械制造业机电一体化的要求。 3DbS\jja
zmF_-Q`c
日本三菱电机株式会社,最近推出的普及型CNC MELDAS 50系列及实用型CNC MELDAS 520A系列,这两个系列都采用了32位RISC微处理器,实现超小型化的CNC装置,较原来的M310及L3、L3A,体积大为减小(H168mm×W76mm×D135mm),安装面积减小了一半,功能还有所提高。采用了超薄型显示器(9.5in的EL及10.4in的彩色LCD)。这个系统的微小线段加工能力提升至64m/min,最大快速进给速度为240m/min,其同步攻螺纹精度较M310提高了3倍,主轴定位时间缩短了30%。德国SIEMENS公司最新推出的SINUMERIK 840D主控组件选用386DX或486DX,具有1~4个通道,可实现直线及圆弧插补、螺旋线插补、5轴螺旋线插补及样条插补、圆柱插补等,共可控制32个轴,并有多种校正及补偿功能,体积仅为50mm×316mm×207mm。 YvR MUT
1t6VS 3
3.改善人机接口,方便用户使用 wpO-cJ!,
a~=$9+?w
为了使操作者能很容易地掌握数控机床的操作,数控设备生产厂努力地改善人机接口,简化编程,尽量采用对话方式,使用户使用方便,如西班牙FAGOR公司生产的FAGOR 8050系列,采用交互式编辑程序指导系统,简化程序的编辑,用简要的表格编辑程序,利用蓝图建立程序。其8050TC型数控系统,被称为高档傻瓜式数控系统(FAGOR800系列CNC系统),其操作面板使用了符号键,用户可以根据所需加工零件,选择加工程序,输入图形数据后,即可实现半自动或全自动加工。如果面板上的各种自动操作都没有被选上,则该CNC系统只显示坐标轴的位置值和主轴转速,操作者可以用摇柄或电子手轮对机床的各个轴进行手动操作,使用极为方便。 &Nl:
l-g+E{ZM
4.提高数控系统产品的成套性 =otJf~
?"\X46Gz;
数控系统包括CNC装置、主轴及进给伺服驱动装置,以及主轴电动机、进给电动机和与其相关的检测反馈元件。一个数控系统性能的好坏是与上述各个环节的性能密切相关的。为了满足机床用户厂的需要,数控设备生产厂都非常重视数控产品的成套性,使系统的各个环节都能很好地匹配,使用户获得最好的使用效果。 '7 SFa]tH
{fmSmD
例如,日本FANUC公司开发了经济型的O-TD、O-MD CNC装置,与之相适应也开发了经济型的αC系列的效流伺服电动机及控制系统。日本大隈(OKUMA)公司,是一个传统的机床厂,现在也开发、生产并销售数控系统,作为一个机床厂生产数控系统,所以更重视机电一体化及产品成套性。该公司生产数控系统在软件上更结合机械加工的工艺要求,硬件上还自行开发了绝对位置编码器、无刷伺服电动机、交流主轴电动机、光栅尺等元件,同时还提供机床控制面板及控制柜、自动编程装置,为用户提供交钥匙工程。 L'M'I0"/
)Z2HzjE
5.研究开发智能型数控系统 *%bQ p
/Ii a >XY
所谓智能型的数控系统,早在80年代初期已经开始研究。当时FANUC公司推出的FS15系列,就称之为AI(人工智能)CNC系统,主要是在故障诊断方面采用了专家系统。系统利用所谓的推理软件,根据存储在系统中的知识库的经验,分析及查找故障原因。最近FANUC公司又在开展被称为面向21世纪的课题—IMS(Intelligent Manufacturing Systems),将无缝地(Seamless)把世界范围熟练工人的技术窍门(Know how)组合进行生产系统中去。 *H8(G%a!^
^^1rjh1I
随着工业技术发展,要求制造过程更快、更容易,以适应生产需要,一种被称为智能闭环加工(Intelligent Closed-Loop Processes ICLP)技术被采用。这种技术是利用传感器获得适时的信息,以增强制造者取得最佳产品的能力。图1就是智能闭环加工模型。 r&U