中国留学生造“量子透镜”:头发丝百分之一厚,量子世界的新窗口
19 世纪末至 20 世纪初,科学家们意外发现,支配整个宏观世界运转的经典物理定律居然在一个全新的“世界”失去效用,那就是微观尺度的量子世界。自那以后,人类一直渴望观察到这个全新“世界”的全部版图,但是,其图景依然比我们想象得更加包罗万象。 或许,我们是时候开发一些新的工具去探索量子世界了。这正是澳大利亚国立大学的一组国际科研团队正在尝试的事情。 最近,他们就开发出一种“量子透镜”,这种非常规镜头厚度约为人类头发丝厚度的 1/100,能够有效传输和检测光量子中编码的信息。这项研究于 9 月 14 日发表在 Science 杂志上。 论文的第一作者、来自中国的澳大利亚国立大学博士研究生王凯对 DT 君说,“‘量子透镜’这个词形象地描述了量子超表面的功能:它可以像镜头一样用成像方法完成对光量子态的测量,帮助我们观测奇妙的量子世界。” 图丨王凯(来源:澳大利亚国立大学) 值得一提的是,这项研究也创造性地将超材料研究和量子光学结合在了一起。超材料是调控光束的非常有力工具,而光子是非常理想的量子信息传输媒介,二者的结合不仅会拓宽超材料的应用范围,也很可能会为光量子信息处理提供新思路新方案,促进量子光学从实验室走向工业应用。 超表面首次在量子领域大放异彩 正如上文所言,这次的“量子透镜”,其实是一种超表面。超表面本身以往一些研究曾发现其存在十分有趣的经典光学特征,如负折射率和“隐形斗篷”。 图丨一种“隐形斗篷”的原理示意图。(来源:Science ) 王凯向 DT 君解释说:“超表面来自于超材料的概念。通过纳米微结构实现的光学超材料可以表现出自然材料不具备的性质,在多领域有着广泛应用。尤其近年来,超材料研究的一个前沿方向,是使用只有一层或几层纳米结构的超表面。” 他介绍,超表面可实现经典光学元件无法实现的功能。比如,用超表面制作的超透镜未来可能会取代智能手机厚厚的镜头组,让手机做得更加轻薄;也可以作为未来医疗传感器的重要部件等等。另外,高透射率的超表面也可以串联使用成为人工智能(例如深度学习)的定制计算元件,可以节能地以光速实现特定的计算功能。 也正是因为看到超表面在经典光的调控中发挥的强大作用,团队相信,超表面在量子光学领域也有很大的应用潜力,尽管这在此前尚未得到充分探索。 图 | 基于超表面的多光子量子态测量及重构的方法研究发表在 Science 杂志上(来源:Science) 最终,他们成功将纳米超表面应用在量子光学信息领域,实现了对量子态多个投影的同时成像,稳健地重构出多光子偏振编码态的振幅、相位、相干性和纠缠度等。 在研究中,团队没有照搬传统的依靠分束元件或者波导的方式,而是充分发挥超表面的优势,将它作为成像元件来使用,像“拍照”一样观察量子世界。 但是,这样的“量子透镜”如何就能保证量子态测量的准确性? 图 | 超表面和纠缠光子相互作用(来源:王凯/澳大利亚国立大学) 据王凯介绍,在量子态的测量中,决定其准确性的一个主要因素是“投影角度”(投影基)的选取。 “打个比方,画一个零件图纸的时候,会画‘三视图’——从正前方、正左侧、正上方的视角,也就是投影。但是没有人会愿意画正前方、正前方往左偏移1度,正前方往上偏移 1 度的视图,因为只观察这样相近的角度是无法准确获知物体形状的。我们的量子超表面在设计中充分考虑到了这个问题,它投影基的选取遵循了量子测量中所谓的‘最优框架’(Optimal-frame),也就是量子超表面使得后面的探测器或者相机可以一次性地从最充分的几个角度观看量子态,从而保证了测量结果的准确性”,王凯说。 一般而言,传统的测量方法需要对量子态进行多次投影测量,因为一次测量只能知道量子态诸多方面中的一个,就如同看一个物体的影子无法完全弄清这个物体的形状。如果想完全弄清楚,需要多次翻转投影的角度。但这样的“翻转”需要借助一些可调节的元件才能实现,因而存在耗时和不稳定的情况。 “近年来,光量子领域开始有一些研究采用一个静态的装置来一次实现多个‘投影’,比如说,用集成光子电路一次把光子引导到多个出口,每个出口对应一个‘投影角度’。但这种方法仍然需要一步步地用必要的光子干涉产生多个不同的‘投影角度’”。 “传统的量子态测量,往往需要借助一些可调节的元件实现这种‘翻转’,多次动态地改变投影的基矢。这种方法常常耗时且不稳定”,王凯说。 因此,团队此次的量子超表面的又一大亮点就在于,完全不需要这些分步步骤,只用一片极其轻薄的超表面,利用光子在光束横截面内的相干性,一次性实现多个“投影角度”和相应的多光子干涉,实现了小型化、稳定可靠、扩展性好的多光子态测量。 两种测量试验验证“量子透镜”效果 实验过程中,团队分别用“量子透镜”对单光子态和双光子干涉及光子态进行了观察。 他们首先使用了波长为 1570.6 nm 的预报光子源,从所有 6 个端口处收集的光子数重构出单光子的量子偏振态。团队观察到,这个过程的测量误差主要由单光子探测的散粒噪声决定,与光子计数的平方根成正比。 最后,研究者利用最大似然估计,用所测量的光子数重构出输入的单光子态,并将其绘制于上图 C 中的庞加莱球上。可以看出,相对于制备的光子态(实线),重构光子态(散点)的平均保真度高达 99.35%。 图 | 用超表面对预报单光子态进行实验测量(来源:Science) 图 | 利用超表面实验实现双光子干涉及光子态的重构(来源:Science) 研究者搭建了一套制备及测量光子量子态的系统,基于该系统,团队进一步实现了对双光子干涉的测量及其密度矩阵的重构。在给定的输入状态下,研究者测量了从超表面获得的 M=6 个输出之间所有的 15 个双重非局域相关,其中时间延迟设定为零。这就为精确重构所输入的双光子的密度矩阵提供了充足的信息。研究者利用两个单光子探测器来映射所有可能的输出组合。其中,上图(D)和(F)分别展示了两种代表性的结果:QWP 角度分别为 ρ(θ= 0°) 和 ρ(θ= 37.5°)。在这两种情况下,预测和重构的密度矩阵之间具有很好的一致性,平均高保真度超过了 95%。 和单光子态的测量相比,超表面双光子干涉实验还有着另一层不可替代的意义。 据王凯描述,这样的实验展现出了纠缠的多个光子在一片超表面上干涉的表现。超表面上像织毛衣一样编织了很多不同的偏振敏感纳米结构。当一对偏振纠缠的光子各自在这个超表面不同的结构上穿过时,干涉实验的低谷或峰值显示,其中一个光子好像‘心有灵犀’地知道另一个光子的走向,虽然它们在空间上是分离的。纠缠光子的此种特性在普通光学元件、集成光路中都得到了广泛验证,但在超表面上是首次。” “量子透镜”结构曝光,密度矩阵成关键 |