"Modern Lens Design" 2nd Edition by Warren J. Smith k{j (Gb2sp
$5a%hK
Contents of Modern Lens Design 2nd Edition X8=sk
N}j^55M_]
1 Introduction $NhKqA`0
1.1 Lens Design Books qlfYX8edZ
1.2 Reference Material |{H-PH*Iz
1.3 Specifications m8njP-CZ
1.4 Lens Design p*Hbc|?{Q&
1.5 Lens Design Program Features ZCS{D
1.6 About This Book p;m2RHYF
x?MSHOia`P
2 Automatic Lens Design : $>TeCm
2.2 The Merit Function CGkCLd*s]
2.3 Local Minima @q]{s+#Xf
2.4 The Landscape Lens !{L`Zd;C>w
2.5 Types of Merit Function v(2|n}qY
2.6 Stagnation h_:|H8t;w
2.7 Generalized Simulated Annealing 0 SeDBs
2.8 Considerations about Variables for Optimization \;Ywr3
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ?Em*yc@WD
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits *PJg~F%
2.11 Spectral Weighting 4#BoS9d2I<
2.12 How to Get Started
=+j>?Yi
`*=Tf
3 Improving a Design YaDr.?
3.1 Lens Design Tip Sheet: Standard Improvement Techniques +]%d'h
3.2 Glass Changes ( Index and V Values ) ` 'y[i
3.3 Splitting Elements r*!sA5
3.4 Separating a Cemented Doublet ,pz^8NJAI
3.5 Compounding an Element +B#3!
3.6 Vignetting and Its Uses )m Uc
!TP
3.7 Eliminating a Weak Element; the Concentric Problem :5`BhFAd
3.8 Balancing Aberrations A+lP]Oy0S
3.9 The Symmetrical Principle 4^0L2BVcv
3.10 Aspheric Surfaces R1DXi
&[hq !v
4 Evaluation: How Good is This Design R~],5_|
4.1 The Uses of a Preliminary Evaluation duKR;5:
4.2 OPD versus Measures of Performance t3)nG8>
)
4.3 Geometric Blur Spot Size versus Certain Aberrations '<C I^5^
4.4 Interpreting MTF - The Modulation Transfer Function HV??B :
4.5 Fabrication Considerations jK^'s6i#
yjbqby7
5 Lens Design Data N +9`'n^x
5.1 About the Sample Lens Designs ddMSiwbY)
5.2 Lens Prescriptions, Drawings, and Aberration Plots idf~"a
5.3 Estimating the Potential of a Redesign 4#z@B1Jx
5.4 Scaling a Desing, Its Aberrations, and Its MTF :>.~"uWo{
5.5 Notes on the Interpretation of Ray Intercept Plots /f9jLY+
5.6 Various Evaluation Plot qxsK-8KT<
iG1vy'J#o
6 Telescope Objective .1.Bf26}d
6.1 The Thin Airspaced Doublet +FWkhmTv
6.2 Merit Function for a Telescope Objective f-?00*T
6.3 The Design of an f/7 Cemented Doublet Telescope Objective =yfLqU
6.4 Spherochromatism b0CtQe
6.5 Zonal Spherical Aberration hY.zwotH
6.6 Induced Aberrations Z%Nl<i
6.7 Three-Element Objectives p*rBT,'
6.8 Secondary Spectrum (Apochromatic Systems) CqUK[#kW(
6.9 The Design of an f/7 Apochromatic Triplet l("Dw8H
6.10 The Diffractive Surface in Lens Design s fxQ
6.11 A Final Note x8sSb:N
N4%q-fi
7 Eyepieces and Magnifiers 4425,AR
7.1 Eyepieces g(\FG
7.2 A Pair of Magnifier Designs Z4Nl{
6
7.3 The Simple, Classical Eyepieces -i@1sNx&'
7.4 Design Story of an Eyepiece for a 6*30 Binocular \k1psqw^O
7.5 Four-Element Eyepieces "qRE1j@%a
7.6 Five-Element Eyepieces $-$^r;
7.7 Very High Index Eyepiece/Magnifier 5uK:f\y)l
7.8 Six- and Seven-Element Eyepieces e`#c[lbAAM
j5ZeYcQ-
8 Cooke Triplet Anastigmats U3 e3
8.1 Airspaced Triplet Anastigmats ;f7(d\=y
8.2 Glass Choice ? Ovl(4VG
8.3 Vertex Length and Residual Aberrations
&j,rq?eh$
8.4 Other Design Considerations zxtx~XO
8.5 A Plastic, Aspheric Triplet Camera Lens =uZ[
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet m<wng2`NTv
8.7 Possible Improvement to Our “Basic” Triplet 31LXzQvFG
8.7 The Rear Earth (Lanthanum) Glasses qWf7k+7G
8.9 Aspherizing the Surfaces [0D( PV(n
8.10 Increasing the Element Thickness LoLmT7
?9_<LE
q
9 Split Triplets Z;bzp3v
I_J;/!l=
10 The Tessar, Heliar, and Other Compounded Triplets ?5nF` [rx
10.1 The Classic Tessar ;CD.8f]N
10.2 The Heliar/Pentac KvC`6
10.3 The Portrait Lens and the Enlarger Lens udDhJ?
10.4 Other Compounded Triplets <8[BB7
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar mvI[=e*
pvJ@$L`'
11 Double-Meniscus Anastigmats D*Y4B?,
11.1 Meniscus Components #CoJ S[t
11.2 The Hypergon, Totogon, and Metrogon P=eVp(/x
11.3 A Two Element Aspheric Thick Meniscus Camera Lens -$L53i&R
11.4 Protar, Dagor, and Convertible Lenses NIeT.!
11.5 The Split Dagor sB
]~=vUP
11.6 The Dogmar Crmxsw.W^Y
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens {[PoLOCI
Z9s tB>?
12 The Biotar or Double-Gauss Lens !Ac <A.
12.1 The Basic Six-Element Version >&tPIrz
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens jQzq(oDQw
12.3 The Seven-Element Biotar - Split-Rear Singlet }.Ht=E]
12.4 The Seven-Element Biotar - Broken Contact Front Doublet _e$15qW+
12.5 The Seven-Element Biotar - One Compounded Outer Element q4<3 O"c1
12.6 The Eight-Element Biotar L,| 60*
12.7 A “Doubled Double-Gauss” Relay [!4p5;
/c~z(wv
13 Telephoto Lenses SsfnBCVR
13.1 The Basic Telephoto j`A%(()d
13.2 Close-up or Macro Lenses ;wIpch e
13.3 Telephoto Designs jpZ, $
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch kt.z,<w5O
+~\1Zgw
^ElUU ?rX
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses V&<vRIsN
14.1 The Reverse Telephoto Principle CN@bJo2
14.2 The Basic Retrofocus Lens V} Y %9V
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Y 9]
sPn[FuT>+s
15 Wide Angle Lenses with Negative Outer Lenses Iodk1Y;
tgH@|Kg
16 The Petzval Lens; Head-up Display Lenses Z 9mY*}:U~
16.1 The Petzval Portrait Lens k/YEUC5
16.2 The Petzval Projection Lens _Iy0-=G
16.3 The Petzval with a Field Flattener Ub*Gv(Pg
16.4 Very Height Speed Petzval Lenses -! Hn,93
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems \ Q<c Y<
08{0i,Fs
17 Microscope Objectives V #W,}+_Sz
17.1 General Considerations l=U@j
T
17.2 Classic Objective Design Forms; The Aplanatic Front 5G cdz
17.3 Flat-Field Objectives u
HqP b8
17.4 Reflecting Objectives cq+|fg~Yy
17.5 The Microscope Objective Designs 5*u0VabC<
5v"QKI
18 Mirror and Catadioptric Systems %4Cs
c
18.1 The Good and Bad Points of Mirrors Aa-L<wZVPt
18.2 The Classic Two-Mirror Systems ^%V'l-}/
18.3 Catadioptric Systems :}}5TJ wG
18.4 Aspheric Correctors and Schmidt Systems 0P^RciC f
18.5 Confocal Paraboloids xGTVC=q
18.6 Unobscured Systems .)o<'u@Ri
18.7 Design of a Schmidt-Cassegrain “from Scratch” FjqoO.
m07=
_4
19 Infrared and Ultraviolet Systems `z%f@/:fG
19.1 Infrared Optics 0]=|3-n
19.2 IR Objective Lenses wl H6
19.3 IR Telescope =#dW^?p
19.4 Laser Beam Expanders 4;'o`K~*
19,5 Ultraviolet Systems Nw[TP
G5
19.6 Microlithographic Lenses _0ki19rs
&2[OH}4
20 Zoom Lenses &^Q-:Kxs8
20.1 Zoom Lenses hRTw8-wy:
20.2 Zoom Lenses for Point and Shoot Cameras }Tf~)x
20.3 A 20X Video Zoom Lens \,)('tUE
20.4 A Zoom Scanner Lens {J;[
Hf5
20.5 A Possible Zoom Lens Design Procedure +X(@o
:["iBrFp
21 Projection TV Lenses and Macro Lenses Aon3G
21.1 Projection TV Lenses p;cNmMm
21.2 Macro Lenses O4J <u-E$
(CFm6p'RZ
22 Scanner/ , Laser Disk and Collimator Lenses z ^t6VF M
22.1 Monochromatic Systems }M-^A{C\%
22.2 Scanner Lenses PNY"Lqj
22.3 Laser Disk, Focusing, and Collimator Lenses F
\6-s`(
_0dm?=
23 Tolerance Budgeting o0nd]"q?
23.1 The Tolerance Budget Y!s94#OaZ
23.2 Additive Tolerances q ww*
23.3 Establishing the Tolerance Budget wb~BY
? cU9~=
24 Formulary @v&hr
24.1 Sign Conventions, Symbols, and Definitions K}7E;O5m"
24.2 The Cardinal Points l# u$w&
24.3 Image Equations r(WR=D{
24.4 Paraxial Ray Tracing (Surface by Surface) ?D?_D,"C
24.5 Invariants LG3D3{H(.
24.6 Paraxial Ray Tracing (Component by Component) KBJ%$OQV
24.7 Two-Componenet Relationships j<|I@0
24.8 Third-Order Aberrations – Surface Contributions 3NU{7,F
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs shlMJa?
24.10 Stop Shift Equations LkYcAY$w
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces Nki08qZ[
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) B!{vSBq
L~9Q7 6w
2$ m#)*\
Glossary VwJ A
Reference ?5'E P|<
Index