"Modern Lens Design" 2nd Edition by Warren J. Smith XfEp_.~JM
}lq$Fi/
Contents of Modern Lens Design 2nd Edition \|4F?Y
m<;MOS
1 Introduction uzp\<\d-t
1.1 Lens Design Books TL-ALtG
1.2 Reference Material f*m^x7
1.3 Specifications 5yW}#W>
1.4 Lens Design gId
:IR
1.5 Lens Design Program Features ,>kXn1 ,
1.6 About This Book c*(=Glzn
D51O/.:U2
2 Automatic Lens Design Pc+,iK>
2.2 The Merit Function `sv]/8RN
2.3 Local Minima 8H3O6ro
2.4 The Landscape Lens @P=n{-pIW
2.5 Types of Merit Function h9nh9a(2
2.6 Stagnation A~s6~
2.7 Generalized Simulated Annealing @te}Asv
2.8 Considerations about Variables for Optimization wSALK)T1{
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems QdD@[
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits a6d|Ps.\!
2.11 Spectral Weighting |^w&dj\,
2.12 How to Get Started 2@&"*1(Xu
mndEB!b
3 Improving a Design I'<sJs*p
3.1 Lens Design Tip Sheet: Standard Improvement Techniques YR)^F|G
3.2 Glass Changes ( Index and V Values ) #TgP:t]p
3.3 Splitting Elements G+3uY25y
3.4 Separating a Cemented Doublet E*v+@rv
3.5 Compounding an Element #S|On[Q!
3.6 Vignetting and Its Uses f\:I1y
3.7 Eliminating a Weak Element; the Concentric Problem 0zjGL7
3.8 Balancing Aberrations i-sm 9K'ns
3.9 The Symmetrical Principle On+0@hh
3.10 Aspheric Surfaces zHW&i~
PhmtCp0-7-
4 Evaluation: How Good is This Design iZ(p]0aP7
4.1 The Uses of a Preliminary Evaluation nxuR^6Ai
4.2 OPD versus Measures of Performance E/d\ebX|
4.3 Geometric Blur Spot Size versus Certain Aberrations v1NFz>Hx
4.4 Interpreting MTF - The Modulation Transfer Function 8nSw7:z
4.5 Fabrication Considerations #hEU)G'$+
You~
6d6Om
5 Lens Design Data *m6*sIR
5.1 About the Sample Lens Designs /\pUA!G)BD
5.2 Lens Prescriptions, Drawings, and Aberration Plots MR* %lZpB
5.3 Estimating the Potential of a Redesign 368H6 Jj
5.4 Scaling a Desing, Its Aberrations, and Its MTF od3b,Q
5.5 Notes on the Interpretation of Ray Intercept Plots 8PGuZw<
5.6 Various Evaluation Plot NE@P8pQ>
7.
eiM!7g
6 Telescope Objective ><)fK5x
6.1 The Thin Airspaced Doublet l-'\E6grdH
6.2 Merit Function for a Telescope Objective ]mi)x63^
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 7{[i)
6.4 Spherochromatism <yKyM#4X
6.5 Zonal Spherical Aberration ZZ].h2=K
6.6 Induced Aberrations %bhFl,tL
6.7 Three-Element Objectives W6yz/{Rf
6.8 Secondary Spectrum (Apochromatic Systems) v;"
pc)i
6.9 The Design of an f/7 Apochromatic Triplet cdfnM% `>\
6.10 The Diffractive Surface in Lens Design Z
Mf,3
6.11 A Final Note 8WG_4e
T(*A0
7 Eyepieces and Magnifiers #XAH`L\
7.1 Eyepieces H4e2#]*i7
7.2 A Pair of Magnifier Designs x=44ITe1n[
7.3 The Simple, Classical Eyepieces i]zTY\gw8M
7.4 Design Story of an Eyepiece for a 6*30 Binocular [\"<=lb`
7.5 Four-Element Eyepieces /<IXCM.
7.6 Five-Element Eyepieces PW-sF
7.7 Very High Index Eyepiece/Magnifier yL3F
7.8 Six- and Seven-Element Eyepieces '/F~vSQsR
bj+foNvu\
8 Cooke Triplet Anastigmats zvbz3 a
8.1 Airspaced Triplet Anastigmats }ev+WIERQV
8.2 Glass Choice 5R#:ALwX:
8.3 Vertex Length and Residual Aberrations G*^4CJ
8.4 Other Design Considerations 3T@`VFbE
8.5 A Plastic, Aspheric Triplet Camera Lens pR~"p#Y
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ?D=%k8)Y
8.7 Possible Improvement to Our “Basic” Triplet V5d|Lpm
8.7 The Rear Earth (Lanthanum) Glasses ; 5!8LmZ0#
8.9 Aspherizing the Surfaces S2
YxA
8.10 Increasing the Element Thickness h&IF?h
hhr>nuA
9 Split Triplets
1);E!D[
M_F4I$V4
10 The Tessar, Heliar, and Other Compounded Triplets yTU'voE.|
10.1 The Classic Tessar (FNX>2Mv
10.2 The Heliar/Pentac %A;s3]V
10.3 The Portrait Lens and the Enlarger Lens ltmD=-]G_
10.4 Other Compounded Triplets Z4PAdT
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar %lN4"jtx
!Ka~X!+\
11 Double-Meniscus Anastigmats KKJ a?e`C
11.1 Meniscus Components VN<baK%]
11.2 The Hypergon, Totogon, and Metrogon 78u=J z6
11.3 A Two Element Aspheric Thick Meniscus Camera Lens c}#(,<8X
11.4 Protar, Dagor, and Convertible Lenses N+ ei)-
11.5 The Split Dagor is=|rY9$
11.6 The Dogmar _1HEGX\
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens PAy7b7m~B
^p #bxN")
12 The Biotar or Double-Gauss Lens vjXCArS
12.1 The Basic Six-Element Version { :_qa |
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens \!'K#%]9
12.3 The Seven-Element Biotar - Split-Rear Singlet 4fdO Ow
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ;F>I+l_X
12.5 The Seven-Element Biotar - One Compounded Outer Element 4S,/Z{ J.
12.6 The Eight-Element Biotar ;JR_z'<
12.7 A “Doubled Double-Gauss” Relay Hbz,3{o5
yg@}j
13 Telephoto Lenses <x1H:8A
13.1 The Basic Telephoto m}fY5r<<;/
13.2 Close-up or Macro Lenses :X-\!w\
13.3 Telephoto Designs T
^z Mm
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch kZvh<NFh_
ou'|e "tI
Xw9"wAj
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 9 kS;_(DB
14.1 The Reverse Telephoto Principle jQ\/R~)O
14.2 The Basic Retrofocus Lens ogKd}qTov
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses G X>T~i\f8
+N!!Z2
15 Wide Angle Lenses with Negative Outer Lenses ?VT
]bxb
f%TP>)jag!
16 The Petzval Lens; Head-up Display Lenses [$(/H;
16.1 The Petzval Portrait Lens G@Vz
}B:=
16.2 The Petzval Projection Lens ~qmu?5
16.3 The Petzval with a Field Flattener H3"D$Nv
16.4 Very Height Speed Petzval Lenses 6dX l ny1H
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems $^"_Fox]A\
cK+y3`.0
17 Microscope Objectives 1`8(O >5
17.1 General Considerations HA%r:Px
17.2 Classic Objective Design Forms; The Aplanatic Front lIF*$#`oh*
17.3 Flat-Field Objectives wKs-<b%;
17.4 Reflecting Objectives (L6*#!Dt
17.5 The Microscope Objective Designs 5mYI5~
p
) "Toh=x]
18 Mirror and Catadioptric Systems QG=&{-I~[3
18.1 The Good and Bad Points of Mirrors HxH=~B1"P
18.2 The Classic Two-Mirror Systems ;Cqjg.wkB
18.3 Catadioptric Systems -}2e+DyAy
18.4 Aspheric Correctors and Schmidt Systems 66~]7w
18.5 Confocal Paraboloids O1K~]Nt
18.6 Unobscured Systems 1)f~OL8o
18.7 Design of a Schmidt-Cassegrain “from Scratch” Z
]WA-Q6n
E8.xmTq
19 Infrared and Ultraviolet Systems }D&fw=r"M
19.1 Infrared Optics w~(x*R}
19.2 IR Objective Lenses j;b<oQH
19.3 IR Telescope ePJtdKN:
19.4 Laser Beam Expanders g$ oe00b
19,5 Ultraviolet Systems 4?^t=7N
19.6 Microlithographic Lenses B>&eciY
#%i-{t+_>
20 Zoom Lenses |+MV%QG;
20.1 Zoom Lenses <\cH9D`dE
20.2 Zoom Lenses for Point and Shoot Cameras +vtI1LC;_
20.3 A 20X Video Zoom Lens X K5qE"
20.4 A Zoom Scanner Lens s GP}>w-JZ
20.5 A Possible Zoom Lens Design Procedure :{v:sK
#TX=%x6
21 Projection TV Lenses and Macro Lenses 9v<Sng
21.1 Projection TV Lenses ){oVVLs
21.2 Macro Lenses Y)I8(g}0
?geEq'
22 Scanner/ , Laser Disk and Collimator Lenses xBC:%kG~#
22.1 Monochromatic Systems ?=uw0~O[
22.2 Scanner Lenses k98}Jx7J)"
22.3 Laser Disk, Focusing, and Collimator Lenses Ng} AEAFp
d>Z{TFY
23 Tolerance Budgeting [af<FQ {
23.1 The Tolerance Budget g{cHh(S
23.2 Additive Tolerances E@_M|=p&
23.3 Establishing the Tolerance Budget ?DC3BA\)
SdfrLdi}Y
24 Formulary J
dDP
24.1 Sign Conventions, Symbols, and Definitions Xx0}KJq~"
24.2 The Cardinal Points 5)yQrS !{:
24.3 Image Equations 0F<O \
24.4 Paraxial Ray Tracing (Surface by Surface) ;mLbJT
24.5 Invariants IPl>bD~=p
24.6 Paraxial Ray Tracing (Component by Component) $[Fh|%\
24.7 Two-Componenet Relationships kE".v|@
24.8 Third-Order Aberrations – Surface Contributions D>O{>;y[
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ;6} *0V_!k
24.10 Stop Shift Equations 8F<Qc*'
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces X~Li`
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) %XqLyeOS
N3nk\)V\E
/y,~?
Glossary 9zkR)C
Reference K`@GNT&
Index