"Modern Lens Design" 2nd Edition by Warren J. Smith n-Qpg
b=-LQkcZhK
Contents of Modern Lens Design 2nd Edition qIIl,!&}A
hz8Z)xjJ V
1 Introduction lh?TEQ
1.1 Lens Design Books oA1d8*i^E
1.2 Reference Material 9/nS?>11
1.3 Specifications DKGZm<G>
1.4 Lens Design Q|`sYm'.
1.5 Lens Design Program Features $sX X6K),
1.6 About This Book 6+;B2;*3
Ao/KB_4f*Q
2 Automatic Lens Design IT~pp_6g
2.2 The Merit Function Gap\~Z@L
2.3 Local Minima O)4P)KAO<
2.4 The Landscape Lens i[wEH1jR
2.5 Types of Merit Function /EpsJb`kj
2.6 Stagnation MCcWRbE5#
2.7 Generalized Simulated Annealing kroO~(\
2.8 Considerations about Variables for Optimization =p
lG9
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 9J!@,Zsh
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 0f<$S$~h
2.11 Spectral Weighting NpIx\\d
2.12 How to Get Started N))G/m3
HAi'0%"
3 Improving a Design -'9sn/
3.1 Lens Design Tip Sheet: Standard Improvement Techniques QE8aYPSFf
3.2 Glass Changes ( Index and V Values ) =!RlU)w
3.3 Splitting Elements :$#";t|
3.4 Separating a Cemented Doublet @9wug!,
3.5 Compounding an Element cG`R\$
3.6 Vignetting and Its Uses n #|p R2
3.7 Eliminating a Weak Element; the Concentric Problem HP
/@ _qk
3.8 Balancing Aberrations FLI0C
3.9 The Symmetrical Principle B[I
a8t
3.10 Aspheric Surfaces xqua>!mqS
,X2CV INb}
4 Evaluation: How Good is This Design %Z"I=;=nxI
4.1 The Uses of a Preliminary Evaluation dt efDsK
4.2 OPD versus Measures of Performance dIUg
e`O9
4.3 Geometric Blur Spot Size versus Certain Aberrations e I 6G
4.4 Interpreting MTF - The Modulation Transfer Function t*&O*T+fgy
4.5 Fabrication Considerations ?5> Ep:{+/
{'QA0K
5 Lens Design Data U6pG
5.1 About the Sample Lens Designs 1gZW~6a}
5.2 Lens Prescriptions, Drawings, and Aberration Plots m'Thm{Y,?n
5.3 Estimating the Potential of a Redesign ^nS'3g^"
5.4 Scaling a Desing, Its Aberrations, and Its MTF O'G,
5.5 Notes on the Interpretation of Ray Intercept Plots Ba9le|c5
5.6 Various Evaluation Plot Y;L,}/[
2bB&/Uumsd
6 Telescope Objective f0^DsP
6.1 The Thin Airspaced Doublet 1P'R-I
6.2 Merit Function for a Telescope Objective Wn9b</tf
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 5 GP,J,J
6.4 Spherochromatism qOV6Kh)
6.5 Zonal Spherical Aberration z8ox#+l
6.6 Induced Aberrations fgg;WXcT ~
6.7 Three-Element Objectives tyH*epanw
6.8 Secondary Spectrum (Apochromatic Systems) 5Z`9L|3d
6.9 The Design of an f/7 Apochromatic Triplet P7||d@VW,
6.10 The Diffractive Surface in Lens Design "2}E ARa
6.11 A Final Note Lb'HM-d
1i.t^PY
7 Eyepieces and Magnifiers jtMN )TM
7.1 Eyepieces 8mCL3F
7.2 A Pair of Magnifier Designs ,DHiM-v
7.3 The Simple, Classical Eyepieces pm*6&,
7.4 Design Story of an Eyepiece for a 6*30 Binocular Mpm#a0f
7.5 Four-Element Eyepieces {!B^nCSL
7.6 Five-Element Eyepieces ?W %9H\;
7.7 Very High Index Eyepiece/Magnifier vq df-i
7.8 Six- and Seven-Element Eyepieces (>OCLmV$
-L&FguoVB
8 Cooke Triplet Anastigmats k-v@sb24_
8.1 Airspaced Triplet Anastigmats H'L~8>
8.2 Glass Choice O~r.sJ}
8.3 Vertex Length and Residual Aberrations J&xH"U
8.4 Other Design Considerations QT5,_+ho
8.5 A Plastic, Aspheric Triplet Camera Lens PLi [T4u
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet &J\V
!uVo
8.7 Possible Improvement to Our “Basic” Triplet a-t}L{~
8.7 The Rear Earth (Lanthanum) Glasses =)B@ `"
8.9 Aspherizing the Surfaces `XwFH#_
8.10 Increasing the Element Thickness @bN`+DC!<
PTu~PVbp4
9 Split Triplets 6S;-fj
D3^Yc:[_@
10 The Tessar, Heliar, and Other Compounded Triplets 24TQl<H{
10.1 The Classic Tessar \X=?+|
9
10.2 The Heliar/Pentac IT3xX=|b
10.3 The Portrait Lens and the Enlarger Lens PD$gW`V
10.4 Other Compounded Triplets !,mv 7Yj
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar >-s\$8En'
Ie#LZti
11 Double-Meniscus Anastigmats Y5}<7s\UDO
11.1 Meniscus Components 7*e7P[LQU
11.2 The Hypergon, Totogon, and Metrogon vwZrvjP2
11.3 A Two Element Aspheric Thick Meniscus Camera Lens *}Al0\q0M
11.4 Protar, Dagor, and Convertible Lenses L6^Qn%:OTd
11.5 The Split Dagor IH;+pN
11.6 The Dogmar {xm^DT
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens H!y%Fa Ti
R"S,&
12 The Biotar or Double-Gauss Lens $J>J@4
12.1 The Basic Six-Element Version Nw`}iR0i
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ;:JTb2xbb
12.3 The Seven-Element Biotar - Split-Rear Singlet KJ
Gh)
12.4 The Seven-Element Biotar - Broken Contact Front Doublet D\~*| J
12.5 The Seven-Element Biotar - One Compounded Outer Element wG1A]OJl1
12.6 The Eight-Element Biotar C F2*W).+
12.7 A “Doubled Double-Gauss” Relay *&b~cyC
p}qNw`
13 Telephoto Lenses F2/-Wk@
13.1 The Basic Telephoto b(lC7Xm
13.2 Close-up or Macro Lenses WXqrx*?*+
13.3 Telephoto Designs *5DOTWos
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch $7{|
7l"N%e
Cd:ofv/3
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses H7 acT
14.1 The Reverse Telephoto Principle E>j*m}b
14.2 The Basic Retrofocus Lens ,t4g^67R{
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses c;w%R8z
s6k,'`.
15 Wide Angle Lenses with Negative Outer Lenses FF:Y7wXW
JzA`*X[
16 The Petzval Lens; Head-up Display Lenses rz c}2I
16.1 The Petzval Portrait Lens [KIK}:
16.2 The Petzval Projection Lens xP<cF
16.3 The Petzval with a Field Flattener p)d0ZAs
16.4 Very Height Speed Petzval Lenses nwlo,[
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems gf`uC0
|k~\E|^
17 Microscope Objectives Ol4)*/oZ
17.1 General Considerations -1ke3
17.2 Classic Objective Design Forms; The Aplanatic Front zi~_[l-
17.3 Flat-Field Objectives gn&jNuGg
17.4 Reflecting Objectives (>*<<a22
17.5 The Microscope Objective Designs |A_yr/f
%k8} IBL
18 Mirror and Catadioptric Systems uJ<sa;
18.1 The Good and Bad Points of Mirrors v~>^c1:
18.2 The Classic Two-Mirror Systems -(FVTWi0
18.3 Catadioptric Systems 41y}n{4n8
18.4 Aspheric Correctors and Schmidt Systems #/'5N|?
18.5 Confocal Paraboloids o<f[K}t9
18.6 Unobscured Systems _5I" %E;S
18.7 Design of a Schmidt-Cassegrain “from Scratch” Fx']kn9
.@#i
19 Infrared and Ultraviolet Systems ag*RQ
19.1 Infrared Optics PJu)%al
19.2 IR Objective Lenses g2b%.X4
19.3 IR Telescope pEIc?i*
19.4 Laser Beam Expanders t.m65
19,5 Ultraviolet Systems ~8AcW?4Z
19.6 Microlithographic Lenses t?p[w&@M2
AY['!&T
20 Zoom Lenses 9.R)iA
20.1 Zoom Lenses 24_F`" :-=
20.2 Zoom Lenses for Point and Shoot Cameras wrq0fHwM
20.3 A 20X Video Zoom Lens 7Wg0-{yK4
20.4 A Zoom Scanner Lens ?C
20.5 A Possible Zoom Lens Design Procedure N%{&%C 6{
lJ!+n<K+
21 Projection TV Lenses and Macro Lenses -[?q?w!?
21.1 Projection TV Lenses YC\~PVG
21.2 Macro Lenses iJ_FJ[ U
SS@F:5),
22 Scanner/ , Laser Disk and Collimator Lenses uGl+"/uDu
22.1 Monochromatic Systems dxlaoyv:
22.2 Scanner Lenses ^YzFEu$
22.3 Laser Disk, Focusing, and Collimator Lenses b'`8$;MII
TCJH^gDt
23 Tolerance Budgeting z5Hz-.
23.1 The Tolerance Budget 1,fjdd8OM;
23.2 Additive Tolerances c #+JG
23.3 Establishing the Tolerance Budget HXF5fs
)
'x4#5]
24 Formulary ^ +cf
24.1 Sign Conventions, Symbols, and Definitions ETe,RY
24.2 The Cardinal Points 3X,9K23T
24.3 Image Equations 'M2Jw8i
24.4 Paraxial Ray Tracing (Surface by Surface) yjZxD[
Z
24.5 Invariants 9|O#+_=+v
24.6 Paraxial Ray Tracing (Component by Component) 1lu_<?O
24.7 Two-Componenet Relationships c,;-[sn
24.8 Third-Order Aberrations – Surface Contributions )}\T~#Q]y
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs rJK3;d? E
24.10 Stop Shift Equations weC$\st:D
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces <