"Modern Lens Design" 2nd Edition by Warren J. Smith Tk\?$n
=BW;n]ls
Contents of Modern Lens Design 2nd Edition ebsZ
Wwo'pke
1 Introduction j
N":9+F
1.1 Lens Design Books hA 1_zKZ
1.2 Reference Material vo<'7,
1.3 Specifications S<fSoU+RJ
1.4 Lens Design _-mSK/Z
1.5 Lens Design Program Features /&1FgSARK
1.6 About This Book H%y!lR{c^D
%{"v^4
2 Automatic Lens Design 4OX|pa
2.2 The Merit Function m/TjXA8_
2.3 Local Minima m
ioNMDG
2.4 The Landscape Lens s9^r[l@W0U
2.5 Types of Merit Function Dfz3\|LJ
2.6 Stagnation 5AFy6Ab
2.7 Generalized Simulated Annealing &}}UdJ`
2.8 Considerations about Variables for Optimization +8p4\l$<`
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems EGJ d:>k
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits T'C^,,if
2.11 Spectral Weighting }[2
2.12 How to Get Started b~oQhU??"
gu:8+/W8L
3 Improving a Design $>if@}u
3.1 Lens Design Tip Sheet: Standard Improvement Techniques K3g<NC
3.2 Glass Changes ( Index and V Values ) g_8A1lt
3.3 Splitting Elements vU(uu:U9
3.4 Separating a Cemented Doublet dC,a~`%O
3.5 Compounding an Element T- ~l2u|s
3.6 Vignetting and Its Uses EjY8g@M;t
3.7 Eliminating a Weak Element; the Concentric Problem )O}q{4,}
3.8 Balancing Aberrations 1 >}x9D
3.9 The Symmetrical Principle cpLlkR O
3.10 Aspheric Surfaces }X|*+<
c2E*A+V#u
4 Evaluation: How Good is This Design 9I1D'7wI^^
4.1 The Uses of a Preliminary Evaluation T5<851rH
4.2 OPD versus Measures of Performance |^:qJ;dOP
4.3 Geometric Blur Spot Size versus Certain Aberrations qz_'v{uAj
4.4 Interpreting MTF - The Modulation Transfer Function uT :Yh6
4.5 Fabrication Considerations O-uno{Fd*
;URvZ! {/Z
5 Lens Design Data lq'MLg
5.1 About the Sample Lens Designs ?:woUTyCv
5.2 Lens Prescriptions, Drawings, and Aberration Plots @y ImR+^.7
5.3 Estimating the Potential of a Redesign 3bU(ea^e$
5.4 Scaling a Desing, Its Aberrations, and Its MTF R"2wop
5.5 Notes on the Interpretation of Ray Intercept Plots <@448,9&
5.6 Various Evaluation Plot kN~:Bh$
&2P=74\=
6 Telescope Objective 'X%5i2
6.1 The Thin Airspaced Doublet q}xYme4
6.2 Merit Function for a Telescope Objective zhdS6Gk+
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 9\ulS2d
6.4 Spherochromatism cfZ$V^xM
6.5 Zonal Spherical Aberration gJFx#s0?6.
6.6 Induced Aberrations P Y&(ObC
6.7 Three-Element Objectives UE\Z]t!
6.8 Secondary Spectrum (Apochromatic Systems) V zTHW5B
6.9 The Design of an f/7 Apochromatic Triplet Kg;u.4.-M
6.10 The Diffractive Surface in Lens Design 4roqD;5|~|
6.11 A Final Note 'c/S$_r
2{}8_G
7 Eyepieces and Magnifiers q]2t3aY%
7.1 Eyepieces GoUsB|-\
7.2 A Pair of Magnifier Designs e0:[,aF`
7.3 The Simple, Classical Eyepieces % B^BN|r
7.4 Design Story of an Eyepiece for a 6*30 Binocular DD fw&
y
7.5 Four-Element Eyepieces UP .4# 1I
7.6 Five-Element Eyepieces v$)ZoM6E
7.7 Very High Index Eyepiece/Magnifier ]tx/t^&/\u
7.8 Six- and Seven-Element Eyepieces E=#
O|[=
w!|jL
$5L
8 Cooke Triplet Anastigmats ia#8 ^z
8.1 Airspaced Triplet Anastigmats e.VQ!)>
8.2 Glass Choice 8= "01
8.3 Vertex Length and Residual Aberrations <Toy8-kj
8.4 Other Design Considerations /~1Ew
8.5 A Plastic, Aspheric Triplet Camera Lens K0fuN)C
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 5"9'=LV~
8.7 Possible Improvement to Our “Basic” Triplet N?s`a;Q[=
8.7 The Rear Earth (Lanthanum) Glasses N8KH.P+
8.9 Aspherizing the Surfaces mJ>msI
@
8.10 Increasing the Element Thickness JKTn
9)*218.
9 Split Triplets d+WNg2#v
g#%Egb1
10 The Tessar, Heliar, and Other Compounded Triplets mFrDV,V
10.1 The Classic Tessar !~Ptnr`;
10.2 The Heliar/Pentac z'&tmje[?
10.3 The Portrait Lens and the Enlarger Lens E_D0Nm%n
10.4 Other Compounded Triplets 8J)Kn4jq
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar b6NGhkr'\
%Y-5L;MI
11 Double-Meniscus Anastigmats 0.kC|
11.1 Meniscus Components 1| dXbyUd
11.2 The Hypergon, Totogon, and Metrogon M2Jb<y]
11.3 A Two Element Aspheric Thick Meniscus Camera Lens s4`,Z*H
11.4 Protar, Dagor, and Convertible Lenses ^{Fo,7
11.5 The Split Dagor Aa+<4
R
11.6 The Dogmar {BY(zsl
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens l T#WM]
i`}!<{k
12 The Biotar or Double-Gauss Lens 7/zaf
12.1 The Basic Six-Element Version (L*<CV
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens #.{ddY{
12.3 The Seven-Element Biotar - Split-Rear Singlet }R!t/8K
12.4 The Seven-Element Biotar - Broken Contact Front Doublet qVssw* GDB
12.5 The Seven-Element Biotar - One Compounded Outer Element ue1g(;
12.6 The Eight-Element Biotar ye-[l7
12.7 A “Doubled Double-Gauss” Relay "*LQr~k~}
\h/)un5
13 Telephoto Lenses dpvEY(Ds
13.1 The Basic Telephoto ?G[=pY:=
13.2 Close-up or Macro Lenses N~ajrv}kd
13.3 Telephoto Designs Q7]bUPDO
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch H8kB.D[7Q
3 MCV?"0
f#McTC3C
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses @<3kj
R?j
14.1 The Reverse Telephoto Principle v7/k0D .
14.2 The Basic Retrofocus Lens uO>pl37@
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 7+;.Q
E/<n"'0ek
15 Wide Angle Lenses with Negative Outer Lenses ,3
[FD9
<v!jS=T
16 The Petzval Lens; Head-up Display Lenses @KRia{
16.1 The Petzval Portrait Lens @RZbo@{~
16.2 The Petzval Projection Lens i|rC Ga0}
16.3 The Petzval with a Field Flattener V4&a+MJ@
16.4 Very Height Speed Petzval Lenses 2sj:
&][R
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems Wuk!\<T{
LrT?
]o
17 Microscope Objectives c!GJS`/
17.1 General Considerations g'td(i[
17.2 Classic Objective Design Forms; The Aplanatic Front X%5 `B2Wu
17.3 Flat-Field Objectives ehLn+tg
17.4 Reflecting Objectives TK0WfWch
17.5 The Microscope Objective Designs xiV!\Z}
u2IU/z8
^
18 Mirror and Catadioptric Systems r$<M*z5q(\
18.1 The Good and Bad Points of Mirrors yg4#,4---b
18.2 The Classic Two-Mirror Systems 8|nc($}~
18.3 Catadioptric Systems }:Y)DH%u
18.4 Aspheric Correctors and Schmidt Systems %f?Zg44
18.5 Confocal Paraboloids ^Rtxef
18.6 Unobscured Systems h8 FV2"
18.7 Design of a Schmidt-Cassegrain “from Scratch” VUOe7c=
P$]K
19 Infrared and Ultraviolet Systems 9Wg;M#c2Y|
19.1 Infrared Optics $1FnjL5u
19.2 IR Objective Lenses [dXa,
19.3 IR Telescope bM2x
(E\O
19.4 Laser Beam Expanders v4K! BW
19,5 Ultraviolet Systems do9~#F
19.6 Microlithographic Lenses HA0F'k
[E+J=L.l
20 Zoom Lenses A]1dR\p
20.1 Zoom Lenses S..8,5mBH
20.2 Zoom Lenses for Point and Shoot Cameras a|(|!=
20.3 A 20X Video Zoom Lens ArScJ\/Nwv
20.4 A Zoom Scanner Lens 49HP2E
20.5 A Possible Zoom Lens Design Procedure qO/3:-
'V8o["P
21 Projection TV Lenses and Macro Lenses Igw2n{})w
21.1 Projection TV Lenses KdD~;Ap$
21.2 Macro Lenses "Pu917_P
a^\F9^j
22 Scanner/ , Laser Disk and Collimator Lenses lANi$
:aE
22.1 Monochromatic Systems XB@i{/6K
22.2 Scanner Lenses 8C[eHC*r
22.3 Laser Disk, Focusing, and Collimator Lenses wn|;Li
eC WF0a
23 Tolerance Budgeting HH0ck(u_A*
23.1 The Tolerance Budget stMxlG"d
23.2 Additive Tolerances cP4C<UG
23.3 Establishing the Tolerance Budget 'n^?DPvD
{NcJL< ;tS
24 Formulary O9m sPb:
24.1 Sign Conventions, Symbols, and Definitions 0!RP7Sx
24.2 The Cardinal Points `gF`Sgz
24.3 Image Equations atW^^4:
24.4 Paraxial Ray Tracing (Surface by Surface) :5'hd^Q
24.5 Invariants rP,|
24.6 Paraxial Ray Tracing (Component by Component) f,|;eF-Z
24.7 Two-Componenet Relationships )T? BO
24.8 Third-Order Aberrations – Surface Contributions xFJT&=Af W
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs a8v\H8@X
24.10 Stop Shift Equations :fnJp9c
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces c}|} o^
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) LE~vSm^#
Q@8(e&{#W
TXT<6(
Glossary /|#2ehE
Reference E2z=U
Index