"Modern Lens Design" 2nd Edition by Warren J. Smith :
:;YS9e
BK>3rjXi>a
Contents of Modern Lens Design 2nd Edition K1y]
!O|d,)$q
1 Introduction J,N='~kfh
1.1 Lens Design Books z~Zu>Q1u[
1.2 Reference Material o[=h=&@5p
1.3 Specifications K4w %XVaH
1.4 Lens Design FPAy.cljJ
1.5 Lens Design Program Features rl:6N*kK
1.6 About This Book e!V3 /*F
/G[2
2 Automatic Lens Design `D
*U@iJ
2.2 The Merit Function R<\5q%@G
2.3 Local Minima Q\H1=8
2.4 The Landscape Lens GJTKqr|1O
2.5 Types of Merit Function +]?/c>M
2.6 Stagnation zNTcy1Sthk
2.7 Generalized Simulated Annealing `)i'1E[9
2.8 Considerations about Variables for Optimization aTi2=HL=S
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems
Ltk'`
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Pv-El+e!
2.11 Spectral Weighting v67utISNI
2.12 How to Get Started {?X#E12vf
qH1k
3 Improving a Design Evjvaa^
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Tt^PiaS!
3.2 Glass Changes ( Index and V Values ) IZ9L
;"}
3.3 Splitting Elements Q4~/Tl;
3.4 Separating a Cemented Doublet W^(:\IvV
3.5 Compounding an Element A=N &(k
3.6 Vignetting and Its Uses 8]G
3.7 Eliminating a Weak Element; the Concentric Problem yT3q~#:
3.8 Balancing Aberrations ;dC>$_P?
3.9 The Symmetrical Principle cx+w_D9b!
3.10 Aspheric Surfaces m!'moumL;
.~3s~y*s
4 Evaluation: How Good is This Design f&=WgITa
4.1 The Uses of a Preliminary Evaluation Kivr)cIG
4.2 OPD versus Measures of Performance dWR-}>
4.3 Geometric Blur Spot Size versus Certain Aberrations `Zdeq.R]
4.4 Interpreting MTF - The Modulation Transfer Function adCTo
4.5 Fabrication Considerations Pn?,56SD=
)Bz2-|\
5 Lens Design Data _%r +?I
5.1 About the Sample Lens Designs ?$chO|QY
5.2 Lens Prescriptions, Drawings, and Aberration Plots !
.q,m>?+
5.3 Estimating the Potential of a Redesign ,Wbr;
zb
5.4 Scaling a Desing, Its Aberrations, and Its MTF {pWb*~!k
5.5 Notes on the Interpretation of Ray Intercept Plots 0\B31=N(
5.6 Various Evaluation Plot iY~.U`b`
|qOoL*z
6 Telescope Objective s%cfJe_k
6.1 The Thin Airspaced Doublet (u_?#PjX
6.2 Merit Function for a Telescope Objective E%.w6-
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ;nSOeAF)Q
6.4 Spherochromatism rd
)_*{
6.5 Zonal Spherical Aberration ]3 KMFV}
6.6 Induced Aberrations 5YV3pFz$)
6.7 Three-Element Objectives AhyV
6.8 Secondary Spectrum (Apochromatic Systems) YK{E=<:
6.9 The Design of an f/7 Apochromatic Triplet d*B^pDf
6.10 The Diffractive Surface in Lens Design =/#+,
6.11 A Final Note g+RgDt9
',_E;(
7 Eyepieces and Magnifiers 6x.ZS'y
7.1 Eyepieces vC
[uEx:
7.2 A Pair of Magnifier Designs )'1rZb5
7.3 The Simple, Classical Eyepieces mm1fG4
*%
7.4 Design Story of an Eyepiece for a 6*30 Binocular 1(YEOZ
7.5 Four-Element Eyepieces V7gv@<1<y
7.6 Five-Element Eyepieces hf`5NcnP
7.7 Very High Index Eyepiece/Magnifier
^ UDNp.6k
7.8 Six- and Seven-Element Eyepieces 7{BTtUMAC
gs:V4$(p4
8 Cooke Triplet Anastigmats prdc}~J8{
8.1 Airspaced Triplet Anastigmats o9XT_!Cwg
8.2 Glass Choice F
]x2;N
8.3 Vertex Length and Residual Aberrations vyA
`Z1
8.4 Other Design Considerations E2nsBP=5C
8.5 A Plastic, Aspheric Triplet Camera Lens + g*s%^(E
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 2=%R>&]*
8.7 Possible Improvement to Our “Basic” Triplet AY(z9&;6
8.7 The Rear Earth (Lanthanum) Glasses llE_-M2gH
8.9 Aspherizing the Surfaces !H^e$BA
8.10 Increasing the Element Thickness RxB9c(s^@
e[($rsx
9 Split Triplets J1\H^gyW)
C f(g
10 The Tessar, Heliar, and Other Compounded Triplets /QW-#K|S&
10.1 The Classic Tessar \i.Yhl:O
10.2 The Heliar/Pentac ?= RC?K
10.3 The Portrait Lens and the Enlarger Lens nYb{?{_ca8
10.4 Other Compounded Triplets q(XO_1W0V
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar X+%5q =N
DGJt$o=&@
11 Double-Meniscus Anastigmats hMNC]
11.1 Meniscus Components %+bw2;a6
11.2 The Hypergon, Totogon, and Metrogon 6>d0i
S@R
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 5*hA6Ex7
11.4 Protar, Dagor, and Convertible Lenses =U`9_]~1c@
11.5 The Split Dagor &_o.:SL|
11.6 The Dogmar ; !9-I%e
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens .kqH}{hf
q(s&2|
12 The Biotar or Double-Gauss Lens )Kbz gmLr
12.1 The Basic Six-Element Version K^Ixu~
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 2)F~
12.3 The Seven-Element Biotar - Split-Rear Singlet K9=f`JI9
12.4 The Seven-Element Biotar - Broken Contact Front Doublet +#RqQ8\
12.5 The Seven-Element Biotar - One Compounded Outer Element !?aL_{7J
12.6 The Eight-Element Biotar KM9)
12.7 A “Doubled Double-Gauss” Relay "V3f"J?
]m=2 $mK
13 Telephoto Lenses 2_C&p6VGj
13.1 The Basic Telephoto @\?QZX(H
13.2 Close-up or Macro Lenses mhi^zHpa
13.3 Telephoto Designs lBZhg~{
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch E5. @=U,c
f2]O5rXp
=C4!h'hz
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses qgkC)
14.1 The Reverse Telephoto Principle ;a9`z+ K
14.2 The Basic Retrofocus Lens mIYM+2p
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses %|o2d&i
LEJn
1
15 Wide Angle Lenses with Negative Outer Lenses 8-geBlCE,
%<yH6h*u
16 The Petzval Lens; Head-up Display Lenses &Ndq^!e
16.1 The Petzval Portrait Lens D:.1Be`Tv
16.2 The Petzval Projection Lens AD@-H0Y
16.3 The Petzval with a Field Flattener ^b&U0k$R
16.4 Very Height Speed Petzval Lenses >!BZ>G2
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems bKac?y~S_
SUaXm#9
17 Microscope Objectives |S.;']t+
17.1 General Considerations BW{&A&j
17.2 Classic Objective Design Forms; The Aplanatic Front h/xV;oj
17.3 Flat-Field Objectives BWev(SF{Ny
17.4 Reflecting Objectives b75en{aDi*
17.5 The Microscope Objective Designs }WM!e"
K0-AP
$
18 Mirror and Catadioptric Systems w#w?Y!JXo
18.1 The Good and Bad Points of Mirrors =&x
u"V
18.2 The Classic Two-Mirror Systems ZB'ms[
18.3 Catadioptric Systems D&/~lhyNZ
18.4 Aspheric Correctors and Schmidt Systems )2g-{cYv
18.5 Confocal Paraboloids IRY/0v
18.6 Unobscured Systems 1 R,?kUa
18.7 Design of a Schmidt-Cassegrain “from Scratch” !+{$dB>a
CU_8
`}
19 Infrared and Ultraviolet Systems 4)z*Vux
19.1 Infrared Optics /;V:<mekf
19.2 IR Objective Lenses GSa U:A
19.3 IR Telescope !J k|ha~r
19.4 Laser Beam Expanders ^#p+#_*V
19,5 Ultraviolet Systems bc%N !d
19.6 Microlithographic Lenses p)YI8nW
tXW7G@
20 Zoom Lenses 5"^Z7+6
20.1 Zoom Lenses r~Vb*~U"
20.2 Zoom Lenses for Point and Shoot Cameras mgI 7zJX
20.3 A 20X Video Zoom Lens 7Ug^aA
20.4 A Zoom Scanner Lens M 0Vs9K=
20.5 A Possible Zoom Lens Design Procedure <}n"gk1is
w)Wg 8
21 Projection TV Lenses and Macro Lenses ^M7pCetjdW
21.1 Projection TV Lenses &!0%"4
21.2 Macro Lenses ~ "stI
p$!Q?&AV/
22 Scanner/ , Laser Disk and Collimator Lenses )I(2t 6i
22.1 Monochromatic Systems k^e;V`(
22.2 Scanner Lenses 1azj%WY
22.3 Laser Disk, Focusing, and Collimator Lenses |N%#;7
@zq]vX-A_
23 Tolerance Budgeting MwO`DrV
23.1 The Tolerance Budget Fh
U* mAX)
23.2 Additive Tolerances H?$gHZPI
23.3 Establishing the Tolerance Budget ~pG,|\9
y*7<tj.`b0
24 Formulary /;9iDjG
24.1 Sign Conventions, Symbols, and Definitions !rPU5y*
24.2 The Cardinal Points jQ&82X%m
24.3 Image Equations (^9dp[2
24.4 Paraxial Ray Tracing (Surface by Surface) `R@b`3*%v
24.5 Invariants D!5{CQl
24.6 Paraxial Ray Tracing (Component by Component) F_z1ey`t
24.7 Two-Componenet Relationships 3R)_'!R[B
24.8 Third-Order Aberrations – Surface Contributions 2Wp)CI<\D
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs "c*&~GSE4
24.10 Stop Shift Equations y6`zdB
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces >Q% FW
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) la{Iqm{i
#-9@*FFL,
0.lOSAq
Glossary
%mr6p}E|
Reference -H9WwFk
Index