"Modern Lens Design" 2nd Edition by Warren J. Smith WdJJt2'
]D&\|,,(
Contents of Modern Lens Design 2nd Edition <jIuVX
~xU\%@I\
1 Introduction /\d@A B^5I
1.1 Lens Design Books w*krPaT3
1.2 Reference Material :3.!?mOe2
1.3 Specifications u?lbC9}$
1.4 Lens Design Cm~z0c|T
1.5 Lens Design Program Features h$$2(!G4
1.6 About This Book xa$4P [
S- JD}+9
2 Automatic Lens Design 9/$Cq
2.2 The Merit Function /nz J`d
2.3 Local Minima !A'3Mw\Nm
2.4 The Landscape Lens eh}I?:(a?
2.5 Types of Merit Function )2: ,E
2.6 Stagnation HA]5:ck
2.7 Generalized Simulated Annealing p%ZAVd*|#V
2.8 Considerations about Variables for Optimization NXSjN~aG2
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems jWcfQ
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits E5
uk<e_
2.11 Spectral Weighting @ w?,7i-S
2.12 How to Get Started {q.|UCg[L
DQ9}('^
3 Improving a Design ?d`j}
3.1 Lens Design Tip Sheet: Standard Improvement Techniques t 4>\;
3.2 Glass Changes ( Index and V Values ) n7(/ml+Q_
3.3 Splitting Elements iPdR;O'
3.4 Separating a Cemented Doublet mG.H=iw
3.5 Compounding an Element 3B?7h/f
3.6 Vignetting and Its Uses E3QyiW
3.7 Eliminating a Weak Element; the Concentric Problem `{ ` W-C
3.8 Balancing Aberrations .F/0:)
3.9 The Symmetrical Principle *Z2#U?_
3.10 Aspheric Surfaces @H61^K<
@
GXi{9
4 Evaluation: How Good is This Design )W |_f
4.1 The Uses of a Preliminary Evaluation #y*p7~|@
4.2 OPD versus Measures of Performance SshjUNx
4.3 Geometric Blur Spot Size versus Certain Aberrations ~As_O6JI
4.4 Interpreting MTF - The Modulation Transfer Function [1g
4.5 Fabrication Considerations `P?!2\/
2c%b
5 Lens Design Data V~]&1
5.1 About the Sample Lens Designs D),hSqJ"
5.2 Lens Prescriptions, Drawings, and Aberration Plots =PIarUJ
5.3 Estimating the Potential of a Redesign 3.w &e0Es
5.4 Scaling a Desing, Its Aberrations, and Its MTF U)C>^ !Us
5.5 Notes on the Interpretation of Ray Intercept Plots b/obHB+:
5.6 Various Evaluation Plot As>P(
Nbd[xs-lw
6 Telescope Objective 8B7~Nq'
6.1 The Thin Airspaced Doublet j6#Vwc r
6.2 Merit Function for a Telescope Objective ~=gpn|@b
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 5q
_n69b
6.4 Spherochromatism l09SWug
6.5 Zonal Spherical Aberration {;+9A}e
6.6 Induced Aberrations #BwOWra
6.7 Three-Element Objectives +%?\#E QJ
6.8 Secondary Spectrum (Apochromatic Systems) s7s@!~
6.9 The Design of an f/7 Apochromatic Triplet u+qj_Ej
6.10 The Diffractive Surface in Lens Design X.[8L^ldh
6.11 A Final Note T4h&ly5
f
%,f(jQfg_
7 Eyepieces and Magnifiers %nhE588xf
7.1 Eyepieces StU9r0`
7.2 A Pair of Magnifier Designs ]:.9:RmEV
7.3 The Simple, Classical Eyepieces Vw+RRi(
7.4 Design Story of an Eyepiece for a 6*30 Binocular )}1S
`*J/O
7.5 Four-Element Eyepieces +l;A L5h
7.6 Five-Element Eyepieces `c? 8i
7.7 Very High Index Eyepiece/Magnifier li9>zjz
7.8 Six- and Seven-Element Eyepieces 5#Et.P'
{!xDJnF;
8 Cooke Triplet Anastigmats x,UP7=6
8.1 Airspaced Triplet Anastigmats kerBy\^
8.2 Glass Choice 4q*mEV
8.3 Vertex Length and Residual Aberrations jf=\\*64r4
8.4 Other Design Considerations @6%o0p9zz
8.5 A Plastic, Aspheric Triplet Camera Lens .svlJSx
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet A>%mJ3M
8.7 Possible Improvement to Our “Basic” Triplet ?u~?:a@K
8.7 The Rear Earth (Lanthanum) Glasses "=!sZO?3
8.9 Aspherizing the Surfaces 6"/4@?
8.10 Increasing the Element Thickness i/RA/q
oa6&?4K?F
9 Split Triplets (lt{$0
z4 KKt&
10 The Tessar, Heliar, and Other Compounded Triplets 3c[]P2Bh
10.1 The Classic Tessar ?63ep:QEk
10.2 The Heliar/Pentac :(#5%6F
10.3 The Portrait Lens and the Enlarger Lens UnOcw
10.4 Other Compounded Triplets j> dL:V&`
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar t>h:s3c
Y'76! Y
11 Double-Meniscus Anastigmats #7=- zda5
11.1 Meniscus Components 3`Gb;D
11.2 The Hypergon, Totogon, and Metrogon DVjwY_nG7
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 2#R8}\
11.4 Protar, Dagor, and Convertible Lenses 'm k_s4J
11.5 The Split Dagor l`."rei%)
11.6 The Dogmar mZ~f?{
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens \nU_UH
f47dB_{5f.
12 The Biotar or Double-Gauss Lens Or:P*l
12.1 The Basic Six-Element Version ,AwX7gx22
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ^wz 2e
12.3 The Seven-Element Biotar - Split-Rear Singlet @|<qTci
12.4 The Seven-Element Biotar - Broken Contact Front Doublet .q|k459oi
12.5 The Seven-Element Biotar - One Compounded Outer Element ._TN;tR~'
12.6 The Eight-Element Biotar \e~5Dx1
12.7 A “Doubled Double-Gauss” Relay "~L$oji
i9D<jkc
13 Telephoto Lenses 1t}
13.1 The Basic Telephoto cFr`9A\-n
13.2 Close-up or Macro Lenses ~ nb1c:F
13.3 Telephoto Designs gl 27&'?E*
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ^xQPj6P}
kY{;(b3Q
C/MQY:X4
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses mX[J15
14.1 The Reverse Telephoto Principle k,-0OoCL-!
14.2 The Basic Retrofocus Lens Yb4%W-5
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses d fSj= 4
OM81$Xo=
15 Wide Angle Lenses with Negative Outer Lenses v\D.j4%ij
a(lmm@;V<
16 The Petzval Lens; Head-up Display Lenses wY"BPl]b
16.1 The Petzval Portrait Lens 3EH7HW
16.2 The Petzval Projection Lens ;*cCaB0u
16.3 The Petzval with a Field Flattener !Y10UmMu
16.4 Very Height Speed Petzval Lenses PxA
OKUpI
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 4@QR2K|
C(kL=WD
17 Microscope Objectives 395`Wkv
17.1 General Considerations pj Md
17.2 Classic Objective Design Forms; The Aplanatic Front CI=M0
17.3 Flat-Field Objectives r!~6.
17.4 Reflecting Objectives N1hj[G[H"
17.5 The Microscope Objective Designs !,R=6b$E5
+*wr=9>
18 Mirror and Catadioptric Systems Ho1 V)T>
18.1 The Good and Bad Points of Mirrors 9ePom'1f1
18.2 The Classic Two-Mirror Systems v^B2etiX_
18.3 Catadioptric Systems p#
|}
o9
18.4 Aspheric Correctors and Schmidt Systems f dJ<(i]7W
18.5 Confocal Paraboloids YT6dI"48
18.6 Unobscured Systems B`:l;<&jX
18.7 Design of a Schmidt-Cassegrain “from Scratch” EAlLxXDDh
m .R**g
19 Infrared and Ultraviolet Systems v1p^="IHI
19.1 Infrared Optics D9!$H!T _
19.2 IR Objective Lenses *!ecb1U5
19.3 IR Telescope ZE9.r`
19.4 Laser Beam Expanders V=<AI.Z:w
19,5 Ultraviolet Systems Y]DC; ,
19.6 Microlithographic Lenses q@1xYz:J
S|F:[(WaM
20 Zoom Lenses <==6fc>s
20.1 Zoom Lenses Cv[1HO<
20.2 Zoom Lenses for Point and Shoot Cameras A=wG};%_
20.3 A 20X Video Zoom Lens y-{?0mLq
20.4 A Zoom Scanner Lens ZS[Ut
20.5 A Possible Zoom Lens Design Procedure HSVl$66
lIPz"
21 Projection TV Lenses and Macro Lenses 7&u$^c S(
21.1 Projection TV Lenses t9)S^: 0
21.2 Macro Lenses i&{%}==7
[Y.=bfV!
22 Scanner/ , Laser Disk and Collimator Lenses [S9"' ^H
22.1 Monochromatic Systems =|dHD
22.2 Scanner Lenses ij1YV2v
22.3 Laser Disk, Focusing, and Collimator Lenses H4$f+
J$lfI^^
23 Tolerance Budgeting W}#n.c4+
23.1 The Tolerance Budget MaPI<kYQv
23.2 Additive Tolerances k n/xt
23.3 Establishing the Tolerance Budget rQosI:$
}}Z2@}
24 Formulary RFX{]bQp9
24.1 Sign Conventions, Symbols, and Definitions /EuH2cy$l
24.2 The Cardinal Points [s{[
.0P]+
24.3 Image Equations
+
)[@
24.4 Paraxial Ray Tracing (Surface by Surface) hVAatn[
24.5 Invariants hzT)5'_
24.6 Paraxial Ray Tracing (Component by Component) %m+7$iD
24.7 Two-Componenet Relationships P#D|CP/Cu
24.8 Third-Order Aberrations – Surface Contributions Q>71uM%e`
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs =2}V=E/85
24.10 Stop Shift Equations 8H|ac[hXK2
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces >GLoeCRNu
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) {h
PB%
Pm,.[5uc
k SgE_W)
Glossary _?bO
/y_y
Reference /4@
[^}x
Index