"Modern Lens Design" 2nd Edition by Warren J. Smith |-N\?N9"
XEF|B--,
Contents of Modern Lens Design 2nd Edition Epm\=s
L\||#w
1 Introduction $_-f}E
1.1 Lens Design Books )bZS0f-
1.2 Reference Material r;`6ML[5Vx
1.3 Specifications ]X,C9
1.4 Lens Design mie<jha
1.5 Lens Design Program Features !>B|z=
1.6 About This Book ;z;O}<8s
y]5O45E0
2 Automatic Lens Design )v1n#m,W
2.2 The Merit Function L]L-000D(
2.3 Local Minima M,Q(7z?#5
2.4 The Landscape Lens ,K Ebnk|i
2.5 Types of Merit Function :E/]Bjq$;
2.6 Stagnation ?[Od.
2.7 Generalized Simulated Annealing <d,Qi.G4
2.8 Considerations about Variables for Optimization 6[kp#
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems u8pJjn;
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits n?*Fr sZ
2.11 Spectral Weighting TI-8I)
2.12 How to Get Started * B!uYP
=Mb!&qq
3 Improving a Design nwh7DUi
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ^PIUA'
3.2 Glass Changes ( Index and V Values ) ahNpHTPa
3.3 Splitting Elements (tV/.x*G
3.4 Separating a Cemented Doublet ~:r:?PwWG
3.5 Compounding an Element 42aYM!
3.6 Vignetting and Its Uses NF <|3|
3.7 Eliminating a Weak Element; the Concentric Problem 6q
._8%
3.8 Balancing Aberrations WpE\N0Yg
3.9 The Symmetrical Principle [mKPOg-t
3.10 Aspheric Surfaces ~"89NVk"
DjK:)
4 Evaluation: How Good is This Design +^n [B
4.1 The Uses of a Preliminary Evaluation tgy*!B6a~
4.2 OPD versus Measures of Performance A+*M<W
4.3 Geometric Blur Spot Size versus Certain Aberrations XTpYf
4.4 Interpreting MTF - The Modulation Transfer Function (j;s6g0
4.5 Fabrication Considerations ?sV0T)uk
M<oIo036
5 Lens Design Data mt$0p|B8
5.1 About the Sample Lens Designs 4(>|f_$
5.2 Lens Prescriptions, Drawings, and Aberration Plots 6m_
fEkS[
5.3 Estimating the Potential of a Redesign Y.&nxT95=
5.4 Scaling a Desing, Its Aberrations, and Its MTF A L|F
Bd
5.5 Notes on the Interpretation of Ray Intercept Plots 6('2.^8
5.6 Various Evaluation Plot iB1"aE3
?yop#tjCbY
6 Telescope Objective <U(wLG'XS
6.1 The Thin Airspaced Doublet XVcY?_AS#
6.2 Merit Function for a Telescope Objective <&:OSd:%
6.3 The Design of an f/7 Cemented Doublet Telescope Objective s Wk92x _l
6.4 Spherochromatism zKB$n.H
6.5 Zonal Spherical Aberration 5hwe ul>S
6.6 Induced Aberrations {/SUfXq
6.7 Three-Element Objectives ]cvP !
6.8 Secondary Spectrum (Apochromatic Systems) &@CcH_d*
6.9 The Design of an f/7 Apochromatic Triplet R&Y+x;({
6.10 The Diffractive Surface in Lens Design rnW(<t"
6.11 A Final Note D+G?:mR
Z _W.iBF
7 Eyepieces and Magnifiers qScc~i Oq
7.1 Eyepieces K*^3FO}JG
7.2 A Pair of Magnifier Designs NuZiLtC
7.3 The Simple, Classical Eyepieces o
NX-vN-
7.4 Design Story of an Eyepiece for a 6*30 Binocular aMdWT4
7.5 Four-Element Eyepieces 7M;7jI/C
7.6 Five-Element Eyepieces (/TYET_H
7.7 Very High Index Eyepiece/Magnifier )Y.H*ca
7.8 Six- and Seven-Element Eyepieces M?m Pi 3
/
i[F
8 Cooke Triplet Anastigmats J?VMQTa/+
8.1 Airspaced Triplet Anastigmats E(]39B"i
8.2 Glass Choice [\eh$r\
8.3 Vertex Length and Residual Aberrations XS+2OutVo
8.4 Other Design Considerations z2'3P{#s
8.5 A Plastic, Aspheric Triplet Camera Lens zf+jQ
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet jpijnz{M
8.7 Possible Improvement to Our “Basic” Triplet -JgN$Sf
8.7 The Rear Earth (Lanthanum) Glasses DJ)Q,l*|N9
8.9 Aspherizing the Surfaces 4mYJ i#e6x
8.10 Increasing the Element Thickness -\=s+n_ZP?
cQM_kV??!
9 Split Triplets WbF[4x
/G*]3=cSe
10 The Tessar, Heliar, and Other Compounded Triplets Eod'Esye5
10.1 The Classic Tessar B?A]0S
10.2 The Heliar/Pentac miWog 8j
10.3 The Portrait Lens and the Enlarger Lens ;1x(~pD*o
10.4 Other Compounded Triplets eO7 )LM4
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar `^_c&y K
C8dC_9
11 Double-Meniscus Anastigmats ;W"=s79
11.1 Meniscus Components +%E)]*Ym
11.2 The Hypergon, Totogon, and Metrogon Klr+\R@(n
11.3 A Two Element Aspheric Thick Meniscus Camera Lens i`k{}!F
11.4 Protar, Dagor, and Convertible Lenses #Y|t,x;
11.5 The Split Dagor -d'swx2aZ!
11.6 The Dogmar R3 Zg,YM
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens H5MO3DJ
o'Rr2,lVi
12 The Biotar or Double-Gauss Lens y}aKL(AaU
12.1 The Basic Six-Element Version pAdx 6
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens $W_sIS0\z
12.3 The Seven-Element Biotar - Split-Rear Singlet ]*/%5ZOI&
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Go;fQ yG
12.5 The Seven-Element Biotar - One Compounded Outer Element Ec2?'*s
12.6 The Eight-Element Biotar <D}yqq@|
12.7 A “Doubled Double-Gauss” Relay fX:=_c
)h0
3sv
13 Telephoto Lenses I='6>+P
13.1 The Basic Telephoto ]7|Zs]6
13.2 Close-up or Macro Lenses {wK|C<K
13.3 Telephoto Designs a+!r5689
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch C3k[ipCN
NC@L,)F
:<QmG3F
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses .#Vup{.
14.1 The Reverse Telephoto Principle 8u|F %Sg
14.2 The Basic Retrofocus Lens @1c[<3xJT
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses nNc>nB1
",,W1]"%
15 Wide Angle Lenses with Negative Outer Lenses 9_Ws8nE
B!j7vXM2
16 The Petzval Lens; Head-up Display Lenses 1#Q~aY
16.1 The Petzval Portrait Lens j3t,Cx
16.2 The Petzval Projection Lens k`(Cwp{Oc
16.3 The Petzval with a Field Flattener r)]8zK4;=
16.4 Very Height Speed Petzval Lenses |#i|BVnoE
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems n.l7V<1
tX.fbL@T
17 Microscope Objectives fVvB8[(;~
17.1 General Considerations H$M{thW
17.2 Classic Objective Design Forms; The Aplanatic Front 4Pv Pp{Y
17.3 Flat-Field Objectives d_] sV4[
17.4 Reflecting Objectives SoJ=[5W
17.5 The Microscope Objective Designs KAI/*G\z
\2#j1/d4
18 Mirror and Catadioptric Systems YQ$Wif:@(n
18.1 The Good and Bad Points of Mirrors hVGK%HCz&
18.2 The Classic Two-Mirror Systems o=)["V
18.3 Catadioptric Systems B;Dl2k^L
18.4 Aspheric Correctors and Schmidt Systems =6O<1<[y
18.5 Confocal Paraboloids EvGKcu
18.6 Unobscured Systems hd%O\D?
18.7 Design of a Schmidt-Cassegrain “from Scratch” Ha41Wn'tZ
`:*O8h~i^8
19 Infrared and Ultraviolet Systems pPH"6
19.1 Infrared Optics ir<K"wi(2
19.2 IR Objective Lenses J#) %{k_
19.3 IR Telescope HceZT e@
19.4 Laser Beam Expanders o |"iW" +
19,5 Ultraviolet Systems :pw6#yi8`
19.6 Microlithographic Lenses Xaw&41K
I&Z+FL&@f
20 Zoom Lenses MZWicfUy
20.1 Zoom Lenses S2PPwCU
20.2 Zoom Lenses for Point and Shoot Cameras Mh@RO|F
20.3 A 20X Video Zoom Lens 2qDyb]9
20.4 A Zoom Scanner Lens +Ua.\1"6
20.5 A Possible Zoom Lens Design Procedure \J-}Dp\0b
,sZ)@?e
21 Projection TV Lenses and Macro Lenses ;=lQMKx0
21.1 Projection TV Lenses J`'wprSBb
21.2 Macro Lenses OhiY <
/I~(*X
22 Scanner/ , Laser Disk and Collimator Lenses XtftG7r9S
22.1 Monochromatic Systems ,cFBLj(@
22.2 Scanner Lenses <!a%GI
22.3 Laser Disk, Focusing, and Collimator Lenses zW:r7
P.
:Oh*Q(>
23 Tolerance Budgeting #v\o@ArX
23.1 The Tolerance Budget A|<i7QVY
23.2 Additive Tolerances N?l
23.3 Establishing the Tolerance Budget &pFP=|Pq
&'"dYZj{
24 Formulary ,tl(\4n
24.1 Sign Conventions, Symbols, and Definitions (Y~gItej
24.2 The Cardinal Points jpt-5@5O
24.3 Image Equations ~vV+)KI
24.4 Paraxial Ray Tracing (Surface by Surface) xz*MFoE
24.5 Invariants 8c<OX!
24.6 Paraxial Ray Tracing (Component by Component) >p>B-m
24.7 Two-Componenet Relationships a+
s%9l
24.8 Third-Order Aberrations – Surface Contributions W.7XShwd*2
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs %ou@Y`
24.10 Stop Shift Equations 4YyVh.x
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces get$r5
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) O`TM}
={B?hjo<-
WVdF/H
Glossary EncJB
Reference .9$
7
+
Index