"Modern Lens Design" 2nd Edition by Warren J. Smith u\t[rC=yd
u8+<uWB
Contents of Modern Lens Design 2nd Edition jph~g*Z
F#X\}MvEU
1 Introduction zesEbR)j
1.1 Lens Design Books F|xXMpC.f
1.2 Reference Material gW/H#T,
1.3 Specifications 4 3]6J]!)
1.4 Lens Design *uA?}XEfi
1.5 Lens Design Program Features ^}/YGAA
1.6 About This Book k`oXo%
xBgf)'W_Z
2 Automatic Lens Design 1yX&iO^d
2.2 The Merit Function RVI],O
2.3 Local Minima R&ou4Y:DG
2.4 The Landscape Lens ;2L=WR%
2.5 Types of Merit Function \lKQDct. -
2.6 Stagnation "MoV*U2s,
2.7 Generalized Simulated Annealing pxI*vgfN7
2.8 Considerations about Variables for Optimization s$H5W`3
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems hXz"}X n
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits /R|"/B0
2.11 Spectral Weighting 3q pkMu3
2.12 How to Get Started wf|CE410
h@{@OAu?
3 Improving a Design KOi%zE%
3.1 Lens Design Tip Sheet: Standard Improvement Techniques PDD` eK}Fj
3.2 Glass Changes ( Index and V Values ) -\UzL:9>
3.3 Splitting Elements ]\#RsVX
3.4 Separating a Cemented Doublet 7DOAG[gH
3.5 Compounding an Element g-+p(Ll|
3.6 Vignetting and Its Uses Z
NCq/
3.7 Eliminating a Weak Element; the Concentric Problem ,P auP~L
3.8 Balancing Aberrations Xo%A nqk
3.9 The Symmetrical Principle 6bHj<6>MX
3.10 Aspheric Surfaces Rx`0VQ
tCc}}2bC&
4 Evaluation: How Good is This Design @Cz1rKU^l
4.1 The Uses of a Preliminary Evaluation n0vPW^EQ
4.2 OPD versus Measures of Performance *,'"\n
4.3 Geometric Blur Spot Size versus Certain Aberrations jDXmre?
4.4 Interpreting MTF - The Modulation Transfer Function g^0
4.5 Fabrication Considerations e}K;5o=I
$<ZX};/D
5 Lens Design Data !^8'LMY<I
5.1 About the Sample Lens Designs 4a!L/m*
5.2 Lens Prescriptions, Drawings, and Aberration Plots U]R7=
5.3 Estimating the Potential of a Redesign Ei}DA=:s
5.4 Scaling a Desing, Its Aberrations, and Its MTF }DZkCzK
5.5 Notes on the Interpretation of Ray Intercept Plots YLFTf1G9
5.6 Various Evaluation Plot HH+rib'u
X='4N<
6 Telescope Objective N#[/h96F
6.1 The Thin Airspaced Doublet !. 0W?6yo
6.2 Merit Function for a Telescope Objective (>;~((2
6.3 The Design of an f/7 Cemented Doublet Telescope Objective u[dI81`
6.4 Spherochromatism ZT^PL3j+
6.5 Zonal Spherical Aberration Q45rP4mQ
6.6 Induced Aberrations .Dx]wv
6.7 Three-Element Objectives C
y&L,
6.8 Secondary Spectrum (Apochromatic Systems) c!841~p(Q
6.9 The Design of an f/7 Apochromatic Triplet )L#I#%
6.10 The Diffractive Surface in Lens Design _@^msyoq
6.11 A Final Note {?m',sG;&
O]~p)E
7 Eyepieces and Magnifiers ~&yaIuW<
7.1 Eyepieces DD~8:\QD
7.2 A Pair of Magnifier Designs .0a$E`V=D
7.3 The Simple, Classical Eyepieces r;Dl
7.4 Design Story of an Eyepiece for a 6*30 Binocular a\%g_Q){
7.5 Four-Element Eyepieces CX1'B0=\r
7.6 Five-Element Eyepieces H>Fy 2w
7.7 Very High Index Eyepiece/Magnifier DAvAozM
7.8 Six- and Seven-Element Eyepieces [e*8hbS
>5 i8%r
8 Cooke Triplet Anastigmats M~"K@g=Wr
8.1 Airspaced Triplet Anastigmats i\t4TdEx(
8.2 Glass Choice QTLOP~^
8.3 Vertex Length and Residual Aberrations _Y~+ #Vc
8.4 Other Design Considerations a{-}8f6
8.5 A Plastic, Aspheric Triplet Camera Lens JgxOxZS`@
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 2^:5aABQ
8.7 Possible Improvement to Our “Basic” Triplet ;e[-t/SI
8.7 The Rear Earth (Lanthanum) Glasses G4=v2_]
8.9 Aspherizing the Surfaces UnO -?
8.10 Increasing the Element Thickness RWoa'lnu
W}Z|v
M$
9 Split Triplets `U;4O)`n
/sYD+*a
10 The Tessar, Heliar, and Other Compounded Triplets ].Et&v
10.1 The Classic Tessar n\P{Mc
10.2 The Heliar/Pentac M"V?fn'
10.3 The Portrait Lens and the Enlarger Lens R"82=">v
10.4 Other Compounded Triplets @,s[l1P
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar c5t?S@b
0&w.QoZY(
11 Double-Meniscus Anastigmats lJK U^?4S8
11.1 Meniscus Components gGZ$}vX
11.2 The Hypergon, Totogon, and Metrogon nNL9B~d
11.3 A Two Element Aspheric Thick Meniscus Camera Lens &1VC0"YJWy
11.4 Protar, Dagor, and Convertible Lenses jmAWto}.
11.5 The Split Dagor G_X'd
11.6 The Dogmar evn ]n
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ,I)/ V>u
XLzHm&;
12 The Biotar or Double-Gauss Lens 0mCrA|A.
12.1 The Basic Six-Element Version tt`b+NOH>
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens Dpof~o,f
12.3 The Seven-Element Biotar - Split-Rear Singlet <)"Mi}Q[)p
12.4 The Seven-Element Biotar - Broken Contact Front Doublet fc&4e:Ve
12.5 The Seven-Element Biotar - One Compounded Outer Element Rr:,'cXGi
12.6 The Eight-Element Biotar cQN}z
Ke
12.7 A “Doubled Double-Gauss” Relay cl{;%4$9
)WBTqML[
13 Telephoto Lenses M#2DI?S@
13.1 The Basic Telephoto N.3M~0M*
13.2 Close-up or Macro Lenses \E0Uj>9+[
13.3 Telephoto Designs EY&hWl*a^
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ~xzRx$vU
^S[Mg6J
Pirc49c
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Rb\\6BU0
14.1 The Reverse Telephoto Principle b^FB[tZ\x
14.2 The Basic Retrofocus Lens CFn!P;.!
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses p+A#t~K
$0{c=r9
15 Wide Angle Lenses with Negative Outer Lenses qL3*H\9N
MT|}[|_
16 The Petzval Lens; Head-up Display Lenses :uqsRFo&4
16.1 The Petzval Portrait Lens qM]eK\q 1
16.2 The Petzval Projection Lens lB3W|-Ci
16.3 The Petzval with a Field Flattener !7Ta Vx}`(
16.4 Very Height Speed Petzval Lenses l*/I ;a$
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 7X1T9'jI2
@-)?2CH[8
17 Microscope Objectives \~U8<z
17.1 General Considerations `&j5/[>v
17.2 Classic Objective Design Forms; The Aplanatic Front mVW:]|!s
17.3 Flat-Field Objectives rsA K0R+
17.4 Reflecting Objectives g)2}`}
17.5 The Microscope Objective Designs FhS:.
kcI3pmgj
18 Mirror and Catadioptric Systems b6Dve]
18.1 The Good and Bad Points of Mirrors AEhh
6v
18.2 The Classic Two-Mirror Systems LbvnV~S
18.3 Catadioptric Systems fY$M**/,
18.4 Aspheric Correctors and Schmidt Systems XkOsnI8n
18.5 Confocal Paraboloids ;#cb%e3
18.6 Unobscured Systems OZs^c2
W
18.7 Design of a Schmidt-Cassegrain “from Scratch” xR\$2(
i5q
VQo
19 Infrared and Ultraviolet Systems (q"Nt_y
19.1 Infrared Optics ^6oz3+
19.2 IR Objective Lenses 9:IVSD&"Rf
19.3 IR Telescope 6:#zlKYJ
19.4 Laser Beam Expanders pjWqI6,
19,5 Ultraviolet Systems MAQkk%6[g
19.6 Microlithographic Lenses 4tof[n3us
[C9 ->`(`
20 Zoom Lenses h /@G[5E
20.1 Zoom Lenses tJ i#bg%
20.2 Zoom Lenses for Point and Shoot Cameras V8 }yK$4b
20.3 A 20X Video Zoom Lens |fOQm
20.4 A Zoom Scanner Lens O2-9Oo@#,
20.5 A Possible Zoom Lens Design Procedure pMKnA.|
>7p?^*&7;
21 Projection TV Lenses and Macro Lenses ehV`@ss
21.1 Projection TV Lenses ^#9
&Rk!t
21.2 Macro Lenses ?ep93:j
:4;ZO~eq!
22 Scanner/ , Laser Disk and Collimator Lenses oM M`7wJw
22.1 Monochromatic Systems nM>oG'm[n
22.2 Scanner Lenses :na9PW`TC
22.3 Laser Disk, Focusing, and Collimator Lenses K}L-$B*i
4%0eX]
23 Tolerance Budgeting u`O
xY
23.1 The Tolerance Budget 2I*
7?`
23.2 Additive Tolerances esIEi!d
23.3 Establishing the Tolerance Budget /ZUKt
L#1YR}m
24 Formulary ]<V[H
24.1 Sign Conventions, Symbols, and Definitions !-_0I:m
24.2 The Cardinal Points ryg1o=1v/
24.3 Image Equations yF8 av=<{
24.4 Paraxial Ray Tracing (Surface by Surface) aqSHo2]DX9
24.5 Invariants g[!t@K
24.6 Paraxial Ray Tracing (Component by Component) }_vE
lBh6$
24.7 Two-Componenet Relationships 0,1:l3iu1M
24.8 Third-Order Aberrations – Surface Contributions UR>zL3
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs yZj:Kp+7
24.10 Stop Shift Equations zxTcjC)y
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces BqC!78Y/e
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) Y?a*-"
,]+P#eXgE
~ODm?k
Glossary *NHBwXg+
Reference $!)Sgb
Index