"Modern Lens Design" 2nd Edition by Warren J. Smith 5pKvNLy.t
.5#tB*H
Contents of Modern Lens Design 2nd Edition Jfixm=.6
t^bdi}[
1 Introduction @FnI?Rx
1.1 Lens Design Books :DJ7d
1.2 Reference Material 6Mf3)o2
1.3 Specifications >TY5ZRB
1.4 Lens Design Ma*dIwEp
1.5 Lens Design Program Features qk+{S[2j
1.6 About This Book NP<F==,
zvK5Zxl
2 Automatic Lens Design fEv<W
2.2 The Merit Function U_
?elz\
2.3 Local Minima 3A}nNHpN
2.4 The Landscape Lens ou,=MpXx*
2.5 Types of Merit Function Jv4D^>yj[
2.6 Stagnation #.<F5
2.7 Generalized Simulated Annealing !=h|&Vta
2.8 Considerations about Variables for Optimization 9,EaN{GM
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems vACsppa>#
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits P9tQS"Rs
2.11 Spectral Weighting u8k{N
2.12 How to Get Started k,*#I<($
4W//Oc@e
3 Improving a Design 5?~[|iPv
3.1 Lens Design Tip Sheet: Standard Improvement Techniques %&=(,;d
3.2 Glass Changes ( Index and V Values ) ;KZtW
3.3 Splitting Elements R{OE{8;
3.4 Separating a Cemented Doublet Y+_5"LV
3.5 Compounding an Element v(Zi;?c
3.6 Vignetting and Its Uses yzM+28}L<I
3.7 Eliminating a Weak Element; the Concentric Problem ?od}~G4s#
3.8 Balancing Aberrations 1f pS"_}
3.9 The Symmetrical Principle mP$G9R
3.10 Aspheric Surfaces N5 rG.6K
=`\,2Nb
4 Evaluation: How Good is This Design @;n$ caw
4.1 The Uses of a Preliminary Evaluation |n6Q
4.2 OPD versus Measures of Performance kj3o1 Y
4.3 Geometric Blur Spot Size versus Certain Aberrations }MavI'
4.4 Interpreting MTF - The Modulation Transfer Function ^tKOxW#
a
4.5 Fabrication Considerations 1-NX>E5
MkNURy>n&
5 Lens Design Data ?"8A^
^
5.1 About the Sample Lens Designs *A1TDc$
5.2 Lens Prescriptions, Drawings, and Aberration Plots t{S{!SF4
5.3 Estimating the Potential of a Redesign ZV q
5.4 Scaling a Desing, Its Aberrations, and Its MTF [ls ?IFg
5.5 Notes on the Interpretation of Ray Intercept Plots @<TfA>*VJ
5.6 Various Evaluation Plot k@";i4}A
C}P
\kDM
6 Telescope Objective sQw`U{JG
6.1 The Thin Airspaced Doublet ATmqq)\s
6.2 Merit Function for a Telescope Objective 97))'gC
6.3 The Design of an f/7 Cemented Doublet Telescope Objective AIxBZt7{b
6.4 Spherochromatism t-4R7`A<
6.5 Zonal Spherical Aberration `)C`_g3Ew
6.6 Induced Aberrations E#2k|TpH4
6.7 Three-Element Objectives .iN*V|n
6.8 Secondary Spectrum (Apochromatic Systems) `Ig2f$}
6.9 The Design of an f/7 Apochromatic Triplet FPUR0myCU
6.10 The Diffractive Surface in Lens Design B%g :Z
6.11 A Final Note Qhr]eu;z
ExP25T
7 Eyepieces and Magnifiers |o=\9:wV
7.1 Eyepieces nC!^,c
7.2 A Pair of Magnifier Designs 6[|<
7.3 The Simple, Classical Eyepieces 7@cvy?
v{
7.4 Design Story of an Eyepiece for a 6*30 Binocular M7<#=pX&
7.5 Four-Element Eyepieces q>:&xR"ra
7.6 Five-Element Eyepieces 7CL@iL Tq
7.7 Very High Index Eyepiece/Magnifier HJ1\FO9\
7.8 Six- and Seven-Element Eyepieces <&0*5|rR
Y7V&zF{
8 Cooke Triplet Anastigmats Y$$?8xr
~
8.1 Airspaced Triplet Anastigmats $0S" Lh{
8.2 Glass Choice Q.2nUT`
8.3 Vertex Length and Residual Aberrations P ~
pbx
8.4 Other Design Considerations U>-#('
8.5 A Plastic, Aspheric Triplet Camera Lens pL/.JzB
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet jG(~9P7
8.7 Possible Improvement to Our “Basic” Triplet !@Vp Bl
8.7 The Rear Earth (Lanthanum) Glasses 6N+)LF}P b
8.9 Aspherizing the Surfaces P5xmLefng
8.10 Increasing the Element Thickness cTaD{!zm5
9egaN_K
9 Split Triplets wY_-
EbYH?hPo
10 The Tessar, Heliar, and Other Compounded Triplets *^+xcG
10.1 The Classic Tessar ,Ve@=<
10.2 The Heliar/Pentac 0:+uw`
%
10.3 The Portrait Lens and the Enlarger Lens R|$`MX}'z
10.4 Other Compounded Triplets Y9L6W+=T
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar N b[o6AX
Ml/p{ *p
11 Double-Meniscus Anastigmats 5"~^;O
11.1 Meniscus Components )$4DH:WN
11.2 The Hypergon, Totogon, and Metrogon (4f9wrK
11.3 A Two Element Aspheric Thick Meniscus Camera Lens b-zX3R;
11.4 Protar, Dagor, and Convertible Lenses jh&vq=PH
11.5 The Split Dagor 'I>#0VRr
11.6 The Dogmar 4bzn^
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens OwIy(ukTI
Jo$Dxa
z
12 The Biotar or Double-Gauss Lens []3}(8yxGb
12.1 The Basic Six-Element Version de47O
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens *>$)#?t
12.3 The Seven-Element Biotar - Split-Rear Singlet 4^ 6L ])y
12.4 The Seven-Element Biotar - Broken Contact Front Doublet fToI,FA
12.5 The Seven-Element Biotar - One Compounded Outer Element _:p_#3s$
12.6 The Eight-Element Biotar j4r,_lH^r
12.7 A “Doubled Double-Gauss” Relay Lbp6I0&n
z ;Nk& <?
13 Telephoto Lenses 9ufs6z
13.1 The Basic Telephoto !D&MJThNy
13.2 Close-up or Macro Lenses c+/C7C o
13.3 Telephoto Designs YY~=h5$
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch j:KQIwc
^tcBxDC"]
1+}Ud.v3VW
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 2I7`
14.1 The Reverse Telephoto Principle Bic {
H
14.2 The Basic Retrofocus Lens RAbq_^Q
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Qb{5*>
)_K@ ?rWS
15 Wide Angle Lenses with Negative Outer Lenses W(4?#lA2W
ymX,k|lh
16 The Petzval Lens; Head-up Display Lenses 4F6o
16.1 The Petzval Portrait Lens =T}uQ$X
16.2 The Petzval Projection Lens QXj(Urp
16.3 The Petzval with a Field Flattener i4rF~'h@
16.4 Very Height Speed Petzval Lenses 7zZ|=W?&{
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems (#M$t!'%
P$Ru NF
17 Microscope Objectives |UO;StF
17.1 General Considerations NYvj?>[y
17.2 Classic Objective Design Forms; The Aplanatic Front yLOLv6g~e
17.3 Flat-Field Objectives (r\h dLX
17.4 Reflecting Objectives 0N ;d)3
17.5 The Microscope Objective Designs &ru0i@?)
Y{tuaBzD
18 Mirror and Catadioptric Systems V<pjR@
18.1 The Good and Bad Points of Mirrors S]/+n>
18.2 The Classic Two-Mirror Systems C
P{h+yCj
18.3 Catadioptric Systems )1
j2
18.4 Aspheric Correctors and Schmidt Systems c (8J
18.5 Confocal Paraboloids hAyPaS #
18.6 Unobscured Systems uwA3!5
18.7 Design of a Schmidt-Cassegrain “from Scratch” L]<4{8H.
7'uc;5:
19 Infrared and Ultraviolet Systems t&]Mt7
19.1 Infrared Optics :q1r2&ne
19.2 IR Objective Lenses N&`ay{&`:
19.3 IR Telescope 6E]rxps}"
19.4 Laser Beam Expanders R,1 ,4XT
19,5 Ultraviolet Systems uK5x[m
19.6 Microlithographic Lenses Mwc3@
e*s{/a?,
20 Zoom Lenses I0RWdOK8K
20.1 Zoom Lenses LWV`xCr8R
20.2 Zoom Lenses for Point and Shoot Cameras nTKfwIeg5
20.3 A 20X Video Zoom Lens ,$-PC=Ti(
20.4 A Zoom Scanner Lens -1JHhRr]
20.5 A Possible Zoom Lens Design Procedure |Wk
G='02
hGV/P94
21 Projection TV Lenses and Macro Lenses +(%[f W
21.1 Projection TV Lenses bp,CvQ'}a
21.2 Macro Lenses _s8_i6 Y
?~IZ{!
22 Scanner/ , Laser Disk and Collimator Lenses M7 !"
t
22.1 Monochromatic Systems fif<[Ax
22.2 Scanner Lenses Shz;)0To
22.3 Laser Disk, Focusing, and Collimator Lenses sKO
;p
g"Bv!9*H
23 Tolerance Budgeting C<>.*wlp=
23.1 The Tolerance Budget Q>$L;1E*,
23.2 Additive Tolerances y9)",G!
23.3 Establishing the Tolerance Budget 9#!tzDOtD
9<S-b |!@
24 Formulary <bI,y_<K
24.1 Sign Conventions, Symbols, and Definitions }}_l@5
24.2 The Cardinal Points [dMxr9M
24.3 Image Equations rI/KrBM
24.4 Paraxial Ray Tracing (Surface by Surface) ]U%Tm>s.
24.5 Invariants zhE7+``g
24.6 Paraxial Ray Tracing (Component by Component) MzD0F#Y
24.7 Two-Componenet Relationships K>y+3HN[6
24.8 Third-Order Aberrations – Surface Contributions pdSyx>rJ
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ^ZG 1
24.10 Stop Shift Equations HrGX-6`
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces LKcrr;
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 9OUhV[D
h#
8b #
NO^(D+9
Glossary )A%Y
wI$
Reference kx[8#+P
Index