"Modern Lens Design" 2nd Edition by Warren J. Smith +pnT6kU|
mO?G[?*\
Contents of Modern Lens Design 2nd Edition i/,G=yA
YL;ZZ2A
1 Introduction }^pnwo9vV
1.1 Lens Design Books Z>7Oez>
1.2 Reference Material \V7Hi\)
1.3 Specifications MVe5j+8
1.4 Lens Design qF%wl
1.5 Lens Design Program Features aL-V 9y
1.6 About This Book @433?g`2b
ad&Mk^p
2 Automatic Lens Design ~g;(`g
2.2 The Merit Function b,#cc>76\
2.3 Local Minima )tz8(S
2.4 The Landscape Lens
i/y+kL
2.5 Types of Merit Function 6K[s),rdv
2.6 Stagnation o{f n}
2.7 Generalized Simulated Annealing \@*cj8e
2.8 Considerations about Variables for Optimization *,_Qdr^F
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ^r(2
r
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Yn'XSV|g
2.11 Spectral Weighting jSa EwN
2.12 How to Get Started }u5 Mexs
@>ONp|}@qI
3 Improving a Design P=KOw;bs
3.1 Lens Design Tip Sheet: Standard Improvement Techniques u8~.6]Ae
3.2 Glass Changes ( Index and V Values ) Ud*.[GRD~
3.3 Splitting Elements VrQw;-rQ
3.4 Separating a Cemented Doublet $kZ,uvKN
3.5 Compounding an Element tqmM7$}}P
3.6 Vignetting and Its Uses kFw3'OZ,
3.7 Eliminating a Weak Element; the Concentric Problem Nr|.]=K)5n
3.8 Balancing Aberrations shYcfLJ
3.9 The Symmetrical Principle ?N,a {#w
3.10 Aspheric Surfaces RVXRF_I
6!+xf
4 Evaluation: How Good is This Design rfXM*h
4.1 The Uses of a Preliminary Evaluation !r.X. C
4.2 OPD versus Measures of Performance TJ?}5h5
4.3 Geometric Blur Spot Size versus Certain Aberrations ucJR #14
4.4 Interpreting MTF - The Modulation Transfer Function n`vqCO7@'
4.5 Fabrication Considerations P2 !~}{-
7EI(7:gOn
5 Lens Design Data 4AZlr*U
5.1 About the Sample Lens Designs !}l)okQH<#
5.2 Lens Prescriptions, Drawings, and Aberration Plots L((z;y>q|
5.3 Estimating the Potential of a Redesign QbV)+7II=
5.4 Scaling a Desing, Its Aberrations, and Its MTF !D7\$
g6g
5.5 Notes on the Interpretation of Ray Intercept Plots (J\D"4q
5.6 Various Evaluation Plot l1gAm #
MGN*i9CE
6 Telescope Objective HTQ.kV
6.1 The Thin Airspaced Doublet }{bO~L7
6.2 Merit Function for a Telescope Objective T~ /Bf
6.3 The Design of an f/7 Cemented Doublet Telescope Objective No=f&GVg
6.4 Spherochromatism c?V,a`6
6.5 Zonal Spherical Aberration ^}U{O A
6.6 Induced Aberrations /n@_Ihx
6.7 Three-Element Objectives J4 !Z,-
6.8 Secondary Spectrum (Apochromatic Systems) $Z.c9rY1
6.9 The Design of an f/7 Apochromatic Triplet rnmWw#
6.10 The Diffractive Surface in Lens Design 0b?9LFd
6.11 A Final Note >J.a,!
C]A*B
7 Eyepieces and Magnifiers bxrByu~| 1
7.1 Eyepieces X
H{5E4P
7.2 A Pair of Magnifier Designs PM[6U#
7.3 The Simple, Classical Eyepieces K*7*`6iU
7.4 Design Story of an Eyepiece for a 6*30 Binocular V=3NIw18
7.5 Four-Element Eyepieces EpOVrk
7.6 Five-Element Eyepieces e%wbUr]c2
7.7 Very High Index Eyepiece/Magnifier azj<aaH
7.8 Six- and Seven-Element Eyepieces ?9mWMf%t
4y>G6TD^
8 Cooke Triplet Anastigmats 3j]La
8.1 Airspaced Triplet Anastigmats >Q[]i4*A
8.2 Glass Choice hL67g
8.3 Vertex Length and Residual Aberrations SY>N-fW\H:
8.4 Other Design Considerations T/-PSfbkj
8.5 A Plastic, Aspheric Triplet Camera Lens .zBSjh_=H
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 1?E\2t&K
8.7 Possible Improvement to Our “Basic” Triplet 7QQ3IepP
8.7 The Rear Earth (Lanthanum) Glasses Nf<([8v;t
8.9 Aspherizing the Surfaces @B7;
8.10 Increasing the Element Thickness I/XVo2Ee
?#J~X\5
9 Split Triplets &|/C*2A
@^k$`W;
10 The Tessar, Heliar, and Other Compounded Triplets "%,zB_ng\<
10.1 The Classic Tessar @zsr.d6Q
10.2 The Heliar/Pentac _.?$~;7
10.3 The Portrait Lens and the Enlarger Lens hh:0m\@<
10.4 Other Compounded Triplets k}F ;e_
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ;d?4phl-.
&NHIX(b6
11 Double-Meniscus Anastigmats W5J"#^kdF8
11.1 Meniscus Components :S~XE
11.2 The Hypergon, Totogon, and Metrogon A' dt
WD
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ${6 ;]ye
11.4 Protar, Dagor, and Convertible Lenses }I05&/o.3p
11.5 The Split Dagor +es.V
/
11.6 The Dogmar AD*+?%hj
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens +~w '?vNc
(Pvch!
12 The Biotar or Double-Gauss Lens xCoQ>.4p
12.1 The Basic Six-Element Version gmJJ(}HVz
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ?>4^e:
12.3 The Seven-Element Biotar - Split-Rear Singlet BO/2kL8*
12.4 The Seven-Element Biotar - Broken Contact Front Doublet &S''fxGL
12.5 The Seven-Element Biotar - One Compounded Outer Element Ddt(*z
/
12.6 The Eight-Element Biotar Rjm5{aa-
12.7 A “Doubled Double-Gauss” Relay }KS[(Q
DC[-<:B
13 Telephoto Lenses MttVgNV
13.1 The Basic Telephoto J]fjg%C2m
13.2 Close-up or Macro Lenses T3'dfe U
13.3 Telephoto Designs zzq/%jki
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch 7v%~^l7:x
uysGOyi<u
a)y8MGx?
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses F
=d L#@^
14.1 The Reverse Telephoto Principle Y,>])R[4
14.2 The Basic Retrofocus Lens RX7,z.9@'O
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses $Iqt
c)DA
<&$!;d8
15 Wide Angle Lenses with Negative Outer Lenses
k"GW3E;
~3/>;[!
16 The Petzval Lens; Head-up Display Lenses x<9|t(
16.1 The Petzval Portrait Lens =_.Zv
16.2 The Petzval Projection Lens i~ zL,/O8
16.3 The Petzval with a Field Flattener V,
)kw{](
16.4 Very Height Speed Petzval Lenses jr~76
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems zx;x@";p
-kQ{~">w
17 Microscope Objectives {%UY1n
17.1 General Considerations VPtA
%1
17.2 Classic Objective Design Forms; The Aplanatic Front *$(9,y\
17.3 Flat-Field Objectives S\g8(\u
17.4 Reflecting Objectives >Pbd#*
17.5 The Microscope Objective Designs 0D$+WX
HZfcLDrO
18 Mirror and Catadioptric Systems Z1^S;#v
18.1 The Good and Bad Points of Mirrors |D`Zi>lv
18.2 The Classic Two-Mirror Systems <t]i'D(K
18.3 Catadioptric Systems 9dy"Y~c
18.4 Aspheric Correctors and Schmidt Systems }IEYH&4!
18.5 Confocal Paraboloids hvZW~
=75
18.6 Unobscured Systems 2JtGS-t
18.7 Design of a Schmidt-Cassegrain “from Scratch” "o=h /q5&
NWX~@Rg
19 Infrared and Ultraviolet Systems `~pB1sS{
19.1 Infrared Optics y~p7&^FeR
19.2 IR Objective Lenses j G{xFz>x
19.3 IR Telescope vEn12s(lj
19.4 Laser Beam Expanders 1T!_d&A1o
19,5 Ultraviolet Systems B\Rq0N]' M
19.6 Microlithographic Lenses T5W r;a
/$I&D}uR`
20 Zoom Lenses &k : |
20.1 Zoom Lenses wQ(ME7t
20.2 Zoom Lenses for Point and Shoot Cameras CaZEU(i
20.3 A 20X Video Zoom Lens X+bLLW>&
20.4 A Zoom Scanner Lens }_5z(7}3
20.5 A Possible Zoom Lens Design Procedure /EKfL\3
!=q {1\#
21 Projection TV Lenses and Macro Lenses 7d'4"c;*;
21.1 Projection TV Lenses B'atwgI0
21.2 Macro Lenses >nvreis
[-vd]ob
22 Scanner/ , Laser Disk and Collimator Lenses )p12SGR5
22.1 Monochromatic Systems +z("'Cv
22.2 Scanner Lenses q:1 1XPP
22.3 Laser Disk, Focusing, and Collimator Lenses u+th?KO`
Y6^lKw
23 Tolerance Budgeting fgTvwOSk
23.1 The Tolerance Budget %#ms`"H
23.2 Additive Tolerances cGOE $nL
23.3 Establishing the Tolerance Budget %>5Ht e<
2/?pI/W
24 Formulary UxD1+\N6?
24.1 Sign Conventions, Symbols, and Definitions }u:^ Mz
24.2 The Cardinal Points 4ol=YGCI_
24.3 Image Equations 5
MQRb?[
24.4 Paraxial Ray Tracing (Surface by Surface) ~~ )&? \N
24.5 Invariants kD MS7y<s
24.6 Paraxial Ray Tracing (Component by Component) Fk=_Q
LI
24.7 Two-Componenet Relationships --",}%-
24.8 Third-Order Aberrations – Surface Contributions Mk,8v],-Tj
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs _Y\@{T;^Zb
24.10 Stop Shift Equations ~]c^v'k
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces rv|k8
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) +=u*!6S
Nk}Hvg*(
UY%@i
Glossary bs%]xf
~D;
Reference E3NYUHfZ
Index