"Modern Lens Design" 2nd Edition by Warren J. Smith VsjE*AJpe
0vjlSHS;`.
Contents of Modern Lens Design 2nd Edition &WV&_z
ui .riD[,O
1 Introduction ;%`oS.69
1.1 Lens Design Books vP @\"
1.2 Reference Material b uOpHQn
1.3 Specifications !V O^oD7
1.4 Lens Design ~bnyk%S
o
1.5 Lens Design Program Features Gzw9E.Hk
1.6 About This Book `iZ){JfAH
?qt .+2:
2 Automatic Lens Design pW,)yo4
2.2 The Merit Function LLD#)Jl{?
2.3 Local Minima F~Sw-b kSf
2.4 The Landscape Lens 9=5xt;mEs}
2.5 Types of Merit Function (ptk!u6
2.6 Stagnation *u ^m f~
2.7 Generalized Simulated Annealing O =gv2e
2.8 Considerations about Variables for Optimization kW4B
@Zh
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems +zL|j/q ?
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits |)[I$]L
2.11 Spectral Weighting <_ruVy0]
2.12 How to Get Started NjH`
AMGBT
n1
3 Improving a Design T)lkT?
3.1 Lens Design Tip Sheet: Standard Improvement Techniques EN-;@P9;C
3.2 Glass Changes ( Index and V Values ) B }t529Z
3.3 Splitting Elements VtYrU>q
3.4 Separating a Cemented Doublet jzb%?8ZJ
3.5 Compounding an Element g/(3D
3.6 Vignetting and Its Uses ={G0p=~+,p
3.7 Eliminating a Weak Element; the Concentric Problem ,ui=Wi1
3.8 Balancing Aberrations MG-#p8
3.9 The Symmetrical Principle !L3\B_#
3.10 Aspheric Surfaces r>_40+|&
m'PU0x
4 Evaluation: How Good is This Design ,vcd>"PK
4.1 The Uses of a Preliminary Evaluation &\m=|S
4.2 OPD versus Measures of Performance YwU[kr-i
4.3 Geometric Blur Spot Size versus Certain Aberrations TMw6
EM
4.4 Interpreting MTF - The Modulation Transfer Function ,TlYQ/j%h
4.5 Fabrication Considerations ,JqCxb9
#D ]P3
5 Lens Design Data yB5JvD ?
5.1 About the Sample Lens Designs :v B9z
5.2 Lens Prescriptions, Drawings, and Aberration Plots Y_=
]w1
5.3 Estimating the Potential of a Redesign )F'r-I%Hi
5.4 Scaling a Desing, Its Aberrations, and Its MTF >!3r7LgK
5.5 Notes on the Interpretation of Ray Intercept Plots " 7g\X$
5.6 Various Evaluation Plot z]HaE|j}S
CNl @8&R
6 Telescope Objective "L&84^lmf
6.1 The Thin Airspaced Doublet MRN=-|fV^
6.2 Merit Function for a Telescope Objective 6mmc{kw'
6.3 The Design of an f/7 Cemented Doublet Telescope Objective #5yz~&
6.4 Spherochromatism V:
n\skM
6.5 Zonal Spherical Aberration l}_6_g>6
6.6 Induced Aberrations {wh, "Ok_
6.7 Three-Element Objectives BF/l#)$yK
6.8 Secondary Spectrum (Apochromatic Systems) ?)O!(=6%'
6.9 The Design of an f/7 Apochromatic Triplet NiBly
6.10 The Diffractive Surface in Lens Design ?p&( Af)
6.11 A Final Note &a!MT^anA~
JXQh$hs
7 Eyepieces and Magnifiers 0BPUbp(
7.1 Eyepieces :$Xvq-#$|
7.2 A Pair of Magnifier Designs S0w:R:q}L
7.3 The Simple, Classical Eyepieces `5
Iaz
7.4 Design Story of an Eyepiece for a 6*30 Binocular C;I:?4
7.5 Four-Element Eyepieces ows3%
7.6 Five-Element Eyepieces
;[B-!F>
7.7 Very High Index Eyepiece/Magnifier gTb%c84
7.8 Six- and Seven-Element Eyepieces 1O2jvt7M
']U<R=5T$
8 Cooke Triplet Anastigmats vLIaTr gz
8.1 Airspaced Triplet Anastigmats F% z$^ m-
8.2 Glass Choice _sK{qQxvM=
8.3 Vertex Length and Residual Aberrations N(`XqeC*
8.4 Other Design Considerations }v6@yU
8.5 A Plastic, Aspheric Triplet Camera Lens ,t
+sw4
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet qFXx/FZ
8.7 Possible Improvement to Our “Basic” Triplet o[%\W
8.7 The Rear Earth (Lanthanum) Glasses ]([^(&2
8.9 Aspherizing the Surfaces 7;9 Jn
8.10 Increasing the Element Thickness p&2oe\j$,
~EM(*k._
9 Split Triplets 5;X r0f
a FL;E
10 The Tessar, Heliar, and Other Compounded Triplets .'bhRQY
10.1 The Classic Tessar 0M!GoqaA
10.2 The Heliar/Pentac 6z2%/P-'
10.3 The Portrait Lens and the Enlarger Lens k:8NOx|s "
10.4 Other Compounded Triplets <UwYI_OX
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar mo"1|Q&
NA+7ey6
11 Double-Meniscus Anastigmats y I} >
11.1 Meniscus Components 3z% W5[E)
11.2 The Hypergon, Totogon, and Metrogon U+,RP$r@
11.3 A Two Element Aspheric Thick Meniscus Camera Lens (qzBy \\p
11.4 Protar, Dagor, and Convertible Lenses L&0aS:
11.5 The Split Dagor NUFW
SL>
11.6 The Dogmar 1D1qOg"LE
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens oSLm?Lu
]GBlads
12 The Biotar or Double-Gauss Lens Lk.tEuj=82
12.1 The Basic Six-Element Version 7Y5.GW\^
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens @H$Sv
12.3 The Seven-Element Biotar - Split-Rear Singlet p8j*m~4B
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Hu+GN3`sx^
12.5 The Seven-Element Biotar - One Compounded Outer Element r@EHn[w
12.6 The Eight-Element Biotar dF><XZph
12.7 A “Doubled Double-Gauss” Relay =w/AJ%6
B+z>$6
13 Telephoto Lenses }/QtIY#I
13.1 The Basic Telephoto ]CDUHz
13.2 Close-up or Macro Lenses B.:1fT7lI
13.3 Telephoto Designs h@dy}Id
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch JCci*F#r
G5ShheZd
EHK+qrym
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 4 %V9
14.1 The Reverse Telephoto Principle g(i8HU*{q
14.2 The Basic Retrofocus Lens ]3~u @6
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses xnHB
<xrE}
mbns%%GJU
15 Wide Angle Lenses with Negative Outer Lenses 5A+@xhRf
L{oG'aK4
16 The Petzval Lens; Head-up Display Lenses <H$!OPV
16.1 The Petzval Portrait Lens n=?wX#rEC#
16.2 The Petzval Projection Lens /=g/{&3[a>
16.3 The Petzval with a Field Flattener nl~Z,Y$
16.4 Very Height Speed Petzval Lenses R_b4S%jhx
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems <[K3Prf C
wVs"+4l<
17 Microscope Objectives A4(k<<xjE
17.1 General Considerations l,Fn_zO
17.2 Classic Objective Design Forms; The Aplanatic Front }<zbx*!
17.3 Flat-Field Objectives Tn9Fg7<
17.4 Reflecting Objectives Bg}l$?S
17.5 The Microscope Objective Designs 33&l.[A"!}
+X`&VO6~
18 Mirror and Catadioptric Systems Ze <)B
*
18.1 The Good and Bad Points of Mirrors >!Xj%RW
18.2 The Classic Two-Mirror Systems o]]sm}3N
18.3 Catadioptric Systems *Q#oV}D_
18.4 Aspheric Correctors and Schmidt Systems 'bsHoO
18.5 Confocal Paraboloids m6#a{
18.6 Unobscured Systems #M4LG; B
18.7 Design of a Schmidt-Cassegrain “from Scratch” 6)BPDfU,
aKE`nA0\B
19 Infrared and Ultraviolet Systems C_JO:$\rE
19.1 Infrared Optics Xppv
19.2 IR Objective Lenses ":q+"*fy
19.3 IR Telescope gAVD-]`
19.4 Laser Beam Expanders +o):grWvQ
19,5 Ultraviolet Systems jFip-=T{4
19.6 Microlithographic Lenses I1rB,%p
mn\A)RQ
20 Zoom Lenses I@\D
tQZ
20.1 Zoom Lenses R+_!FnOJ
20.2 Zoom Lenses for Point and Shoot Cameras bZr,jLEf
20.3 A 20X Video Zoom Lens 3hxV`rb
20.4 A Zoom Scanner Lens Xvoz4'Gme
20.5 A Possible Zoom Lens Design Procedure bYZU}Kl;(
>; tE.CJH
21 Projection TV Lenses and Macro Lenses OCq5}%yU&i
21.1 Projection TV Lenses &SNH1b#>E
21.2 Macro Lenses G:y+yE4
'$eJATtC
22 Scanner/ , Laser Disk and Collimator Lenses L62%s[
22.1 Monochromatic Systems aGfp"NtL
22.2 Scanner Lenses <EcxNj1
22.3 Laser Disk, Focusing, and Collimator Lenses e ;^}@X
,7k-LAA
23 Tolerance Budgeting hg#O_4D
23.1 The Tolerance Budget >#'?}@FWQN
23.2 Additive Tolerances ~<~
~C#R
23.3 Establishing the Tolerance Budget hgzNEx%^q
Dv
L8}dz
24 Formulary ?>iUz.];t
24.1 Sign Conventions, Symbols, and Definitions 7=5eLc^
24.2 The Cardinal Points Pf<yLT]
24.3 Image Equations qS"#jxc==+
24.4 Paraxial Ray Tracing (Surface by Surface) rV4K@)~
24.5 Invariants 4Gh\T`=
24.6 Paraxial Ray Tracing (Component by Component) t`{T:Tjc
24.7 Two-Componenet Relationships */_ 'pt
24.8 Third-Order Aberrations – Surface Contributions 4T;<`{]
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs WUo\jm[yr
24.10 Stop Shift Equations FvYciU!
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces (xoYYO
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) bar=^V)
)B)f`(SA"<
c8Ud<M .
Glossary ^sFO[cYo
Reference MB $aN':
Index