"Modern Lens Design" 2nd Edition by Warren J. Smith @y/wEBb
/LM4-S
Contents of Modern Lens Design 2nd Edition 7HHysNB"w
\Fe_rh
1 Introduction Y=T'WNaL)0
1.1 Lens Design Books \@;\t7~
1.2 Reference Material )C. yF)Ql
1.3 Specifications P N*JR
1.4 Lens Design OGrBUP
1.5 Lens Design Program Features `:eViVl6e
1.6 About This Book _7D _72
/S\cU`ZVe
2 Automatic Lens Design RuG-{NF{F
2.2 The Merit Function P(>(K{v
2.3 Local Minima (LtkA|:
2.4 The Landscape Lens e62Dx#IY
2.5 Types of Merit Function /V?H4z[G
2.6 Stagnation =]>NDWqpHN
2.7 Generalized Simulated Annealing 6UE(f@
2.8 Considerations about Variables for Optimization "|m|E/Z-9
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems =D^TK-H
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 3},Zlu
2.11 Spectral Weighting 3[XQR8o
2.12 How to Get Started poJg"R4
~=Ncp9ej#
3 Improving a Design K{l5m{:%
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Se!)n;?7Sw
3.2 Glass Changes ( Index and V Values ) =_[Z W
3.3 Splitting Elements s(_+!d6
3.4 Separating a Cemented Doublet %k0EpJE%
3.5 Compounding an Element R1-k3;v^
3.6 Vignetting and Its Uses $iM=4
3W
3.7 Eliminating a Weak Element; the Concentric Problem L;QY<b
3.8 Balancing Aberrations T#O??3/%$1
3.9 The Symmetrical Principle SLhEc
3.10 Aspheric Surfaces g8'DoHJ*
*wV[TKaN
4 Evaluation: How Good is This Design L"<B;u5pM
4.1 The Uses of a Preliminary Evaluation r
Db>&s3
4.2 OPD versus Measures of Performance (H?ZSeWx
4.3 Geometric Blur Spot Size versus Certain Aberrations IB|]fzy
4.4 Interpreting MTF - The Modulation Transfer Function OSzjK7:
4.5 Fabrication Considerations _B,_4}
E-1"+p
5 Lens Design Data (}:C+p
'I
5.1 About the Sample Lens Designs X;!D};;M
5.2 Lens Prescriptions, Drawings, and Aberration Plots &D#+6M&LK{
5.3 Estimating the Potential of a Redesign Z v0C@r
5.4 Scaling a Desing, Its Aberrations, and Its MTF dZGbC 9
5.5 Notes on the Interpretation of Ray Intercept Plots =w<v3 wWN4
5.6 Various Evaluation Plot /9Ilo\MdD
Vj;
vo`T
6 Telescope Objective s T3p>8n
6.1 The Thin Airspaced Doublet (3*UPZv
6.2 Merit Function for a Telescope Objective '9J|=z9.
6.3 The Design of an f/7 Cemented Doublet Telescope Objective Pj7gGf6v
6.4 Spherochromatism 0p fnV%
6.5 Zonal Spherical Aberration v.W{x?5
6.6 Induced Aberrations ["3df>!f
6.7 Three-Element Objectives A6ewdT?>,
6.8 Secondary Spectrum (Apochromatic Systems) F3ZxhkF
6.9 The Design of an f/7 Apochromatic Triplet g$j6n{Yl
6.10 The Diffractive Surface in Lens Design KIL18$3J
6.11 A Final Note HBLWOQab
?kt=z4h9(
7 Eyepieces and Magnifiers he)ulB
7.1 Eyepieces S*%iiD)
7.2 A Pair of Magnifier Designs &WZP2Q|
7.3 The Simple, Classical Eyepieces }gsO&g"8
7.4 Design Story of an Eyepiece for a 6*30 Binocular ew#T8F[
7.5 Four-Element Eyepieces w 7tC|^#G
7.6 Five-Element Eyepieces r3I,11B
7.7 Very High Index Eyepiece/Magnifier oTOfK}
7.8 Six- and Seven-Element Eyepieces `HUf v@5
{TZE/A3D,
8 Cooke Triplet Anastigmats b2h":G|s
8.1 Airspaced Triplet Anastigmats }sMW3'V
8.2 Glass Choice n_$yV:MuT!
8.3 Vertex Length and Residual Aberrations Ohl} X 1
8.4 Other Design Considerations =8{*@>CX
8.5 A Plastic, Aspheric Triplet Camera Lens LCQkgRs}~{
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet yBz>0I3
8.7 Possible Improvement to Our “Basic” Triplet ID8k/t!
8.7 The Rear Earth (Lanthanum) Glasses _g6m=N4
8.9 Aspherizing the Surfaces i=QqB0
8.10 Increasing the Element Thickness L2Ux9_S
kqB\xlS7k
9 Split Triplets 7;HUE!5,^l
D6!t VdnVe
10 The Tessar, Heliar, and Other Compounded Triplets DY><qk
10.1 The Classic Tessar T2bnzIi
10.2 The Heliar/Pentac 5_G'68;OV
10.3 The Portrait Lens and the Enlarger Lens a@|.;#FF
10.4 Other Compounded Triplets bNvAyKc-
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar xQz#i-v
oofFrAaT
11 Double-Meniscus Anastigmats QAvWJydb
11.1 Meniscus Components /{N))
11.2 The Hypergon, Totogon, and Metrogon Ea`OT+#h(*
11.3 A Two Element Aspheric Thick Meniscus Camera Lens WbzA Jx 5
11.4 Protar, Dagor, and Convertible Lenses rh $1-Y
11.5 The Split Dagor \o9@[t>&2
11.6 The Dogmar ||a`fH
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens |h1^Gv
P,1exgq9
12 The Biotar or Double-Gauss Lens /8p&Qf>lJ1
12.1 The Basic Six-Element Version yv${M u
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens \r]('x3S
12.3 The Seven-Element Biotar - Split-Rear Singlet `2x 34
12.4 The Seven-Element Biotar - Broken Contact Front Doublet TczXHT}G
12.5 The Seven-Element Biotar - One Compounded Outer Element '?R =P
12.6 The Eight-Element Biotar #J.u
12.7 A “Doubled Double-Gauss” Relay Z90Fcp:R
(^S5Sc=
13 Telephoto Lenses b@-)Fy4d2
13.1 The Basic Telephoto -~'kP /E^
13.2 Close-up or Macro Lenses 'aPCb`^;w
13.3 Telephoto Designs 5TET<f6R
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch
{@\/a
n49s3|#)G
6ZHv,e`?
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses NhtEW0xCr
14.1 The Reverse Telephoto Principle `Y\QUj
14.2 The Basic Retrofocus Lens jmPp-}tS7
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ,$i<@2/=m
~D!ESe*=
15 Wide Angle Lenses with Negative Outer Lenses !>|`ly$6
Et0&E
16 The Petzval Lens; Head-up Display Lenses i -V0Lm/
16.1 The Petzval Portrait Lens _U=S]2QW
16.2 The Petzval Projection Lens O<iI
16.3 The Petzval with a Field Flattener /T#o<D
16.4 Very Height Speed Petzval Lenses 3It8&x:
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems ]84YvpfW
Gavkil
17 Microscope Objectives 4`G=q^GL,
17.1 General Considerations a?\ `
17.2 Classic Objective Design Forms; The Aplanatic Front ~6fRS2u
17.3 Flat-Field Objectives /~"AG l.
17.4 Reflecting Objectives 9>zDJx
17.5 The Microscope Objective Designs |Qq+8IeYG
j5A\y^Kv
18 Mirror and Catadioptric Systems U*xxrt/On/
18.1 The Good and Bad Points of Mirrors 5z[6rT=a
18.2 The Classic Two-Mirror Systems " V/k<HRw
18.3 Catadioptric Systems SJF 2k[da
18.4 Aspheric Correctors and Schmidt Systems hf[IEK
18.5 Confocal Paraboloids bF7`] 83
18.6 Unobscured Systems wISzT^RS
18.7 Design of a Schmidt-Cassegrain “from Scratch” @s?oJpo
SFOQM*H
19 Infrared and Ultraviolet Systems tdb4?^.s
19.1 Infrared Optics 7Fc |
19.2 IR Objective Lenses t3M0La&
19.3 IR Telescope ^zkd{ov
19.4 Laser Beam Expanders @+Pf[J41
19,5 Ultraviolet Systems ]:Wb1
19.6 Microlithographic Lenses `ITDTZ
J
1dXh\r_n
20 Zoom Lenses RDJ82{
20.1 Zoom Lenses _qk9o
20.2 Zoom Lenses for Point and Shoot Cameras SaTEZ.
20.3 A 20X Video Zoom Lens =1_j aDp
20.4 A Zoom Scanner Lens ]#+5)[N$>
20.5 A Possible Zoom Lens Design Procedure q
w"e0q% )
6l=M;B7:i
21 Projection TV Lenses and Macro Lenses OHQ3+WJ
21.1 Projection TV Lenses )8\Z=uC
21.2 Macro Lenses M!{Rq1M
jeyaT^F(
22 Scanner/ , Laser Disk and Collimator Lenses Z|f^nH#-C
22.1 Monochromatic Systems !/[AQ{**T!
22.2 Scanner Lenses R2 'C s
22.3 Laser Disk, Focusing, and Collimator Lenses oF`-cyj"
`~sf}S
:
23 Tolerance Budgeting %Ud.SJ3
23.1 The Tolerance Budget N n:m+ZDo^
23.2 Additive Tolerances 9n-RXVL+
23.3 Establishing the Tolerance Budget Q9SPb6O2
a'c9XG}
24 Formulary s;~J2h[
24.1 Sign Conventions, Symbols, and Definitions xXl$Mp7
24.2 The Cardinal Points &Qz"nCvJ
24.3 Image Equations F&-5&'6G+
24.4 Paraxial Ray Tracing (Surface by Surface) G`&'Bt{Z*
24.5 Invariants I]s:Ev[~
24.6 Paraxial Ray Tracing (Component by Component) `7+tPbjs
24.7 Two-Componenet Relationships ^$3w&$K*
24.8 Third-Order Aberrations – Surface Contributions (%=lq#,
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 0R.Gjz*Q
24.10 Stop Shift Equations hnlU,p&y3
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces mOgx&ns;j
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) !NQf< ch
_AA`R`p;
'&&~IB4ud
Glossary ZhxfI?i)l
Reference Va&KIHw
Index