"Modern Lens Design" 2nd Edition by Warren J. Smith S&'s/jB
Y 9st3
Contents of Modern Lens Design 2nd Edition bB*cd!7y
F/:%YR;
1 Introduction yB{1&S5C
1.1 Lens Design Books _c:th{*
1.2 Reference Material 1r*@1y<0"
1.3 Specifications m?8o\|i,
1.4 Lens Design R;&k/v
1.5 Lens Design Program Features ~[BGKqh
1.6 About This Book s%5XBI
$kkL)O*"]
2 Automatic Lens Design a6It1%a+
2.2 The Merit Function ^![7X'!;pt
2.3 Local Minima #P!M"_z
2.4 The Landscape Lens '9&@?P;
2.5 Types of Merit Function %* gg6Q
2.6 Stagnation ]zIIi%
2.7 Generalized Simulated Annealing bh sCeH
2.8 Considerations about Variables for Optimization 0Xn,q]@Z
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems Z\n^m^Z
=
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits l!\~T"-7;:
2.11 Spectral Weighting q,;wD1_wG
2.12 How to Get Started wCj)@3F
A
;|P\V
3 Improving a Design 9gIim
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 'bg'^PN>z
3.2 Glass Changes ( Index and V Values ) oBo |eRIt|
3.3 Splitting Elements Z,~@_;F
3.4 Separating a Cemented Doublet CqU ^bVs
3.5 Compounding an Element {QOy'
8/
3.6 Vignetting and Its Uses P/q]
u
3.7 Eliminating a Weak Element; the Concentric Problem tk:G6Bkid
3.8 Balancing Aberrations `ah"Q;d$
3.9 The Symmetrical Principle t23W=U
3.10 Aspheric Surfaces QWC C
KhL%ov
4 Evaluation: How Good is This Design Q0ba;KPm
4.1 The Uses of a Preliminary Evaluation N'pYz0_H
4.2 OPD versus Measures of Performance KAu>U3\/
4.3 Geometric Blur Spot Size versus Certain Aberrations |S:erYE,G
4.4 Interpreting MTF - The Modulation Transfer Function iYlkc
4.5 Fabrication Considerations t/3qD7L
G)o:R iq
5 Lens Design Data |=:hUp Jp
5.1 About the Sample Lens Designs #|=lU4Bf
5.2 Lens Prescriptions, Drawings, and Aberration Plots (rBYE[@,
5.3 Estimating the Potential of a Redesign u1.0-Y?
5.4 Scaling a Desing, Its Aberrations, and Its MTF q{f (T\
5.5 Notes on the Interpretation of Ray Intercept Plots d%E*P4Ua
5.6 Various Evaluation Plot Qj|tD+<
GsiKL4|mj
6 Telescope Objective |~rKD c
6.1 The Thin Airspaced Doublet i]qxF&1
6.2 Merit Function for a Telescope Objective J*Cf1 D5!
6.3 The Design of an f/7 Cemented Doublet Telescope Objective X7tBpyi
6.4 Spherochromatism ::cI4D
6.5 Zonal Spherical Aberration 2gEF$?+q?
6.6 Induced Aberrations ho^jmp
6.7 Three-Element Objectives <l eE.hhf.
6.8 Secondary Spectrum (Apochromatic Systems) L2%D$!9
6.9 The Design of an f/7 Apochromatic Triplet K7i@7
6.10 The Diffractive Surface in Lens Design @V^5_K
6.11 A Final Note g\iSc~%?
GSfU*@L3
7 Eyepieces and Magnifiers eIhfhz?Q;#
7.1 Eyepieces HJlxpX$_
7.2 A Pair of Magnifier Designs t=jG $A
7.3 The Simple, Classical Eyepieces nD!t*P
7.4 Design Story of an Eyepiece for a 6*30 Binocular 8cURYg6v
7.5 Four-Element Eyepieces vRDs~'f
7.6 Five-Element Eyepieces BhiOV_}Hn
7.7 Very High Index Eyepiece/Magnifier /2tPd
7.8 Six- and Seven-Element Eyepieces "QBl
"<<s
jI<_(T
8 Cooke Triplet Anastigmats Wo,93]
8.1 Airspaced Triplet Anastigmats 5Ux= 5a
8.2 Glass Choice f=7[GZoDn
8.3 Vertex Length and Residual Aberrations rdAy '38g
8.4 Other Design Considerations ~b4kV)[ q
8.5 A Plastic, Aspheric Triplet Camera Lens ocpM6b.fK
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet C+dz0u3s
8.7 Possible Improvement to Our “Basic” Triplet 7d+0'3%
8.7 The Rear Earth (Lanthanum) Glasses FiXqypT_(
8.9 Aspherizing the Surfaces Id8e%)
8.10 Increasing the Element Thickness cu)B!#<!&
K;>9K'n
9 Split Triplets 19%zcYTe
~w.y9)",
10 The Tessar, Heliar, and Other Compounded Triplets Xc~BHEp
10.1 The Classic Tessar !:}m-iqQ1
10.2 The Heliar/Pentac bh3yH>Zns
10.3 The Portrait Lens and the Enlarger Lens SN[ar&I
10.4 Other Compounded Triplets 3/]~#y%2
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar b%0@nu4
+Z]}ce
u"
11 Double-Meniscus Anastigmats 6:?mz;oP
11.1 Meniscus Components xP27j_*m>
11.2 The Hypergon, Totogon, and Metrogon 2av=W
11.3 A Two Element Aspheric Thick Meniscus Camera Lens }U%T6~_wR
11.4 Protar, Dagor, and Convertible Lenses *uKYrs [
11.5 The Split Dagor a^Q
?K\c4N
11.6 The Dogmar GXRW"4eF5
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens z<J2e^j
$)KNp dXh
12 The Biotar or Double-Gauss Lens aadw#90
12.1 The Basic Six-Element Version C]h_co2eI
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens '+c@U~d*7
12.3 The Seven-Element Biotar - Split-Rear Singlet vZ^U]h V
12.4 The Seven-Element Biotar - Broken Contact Front Doublet %:sP #BQM
12.5 The Seven-Element Biotar - One Compounded Outer Element !JVv`YN
12.6 The Eight-Element Biotar }VHvC"
12.7 A “Doubled Double-Gauss” Relay cyh;1Q
][XCpJ)8
13 Telephoto Lenses I$XwM
13.1 The Basic Telephoto 5'<mfY'B
13.2 Close-up or Macro Lenses %MCS_'N
J
13.3 Telephoto Designs t[AA=
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch Vo|[Z)MO`
7$8DMBqq
'QTa<Z)E
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses PI"6d)S2
14.1 The Reverse Telephoto Principle k?1e+ \
14.2 The Basic Retrofocus Lens -<e_^
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 8m#y>`
?30pNF|
15 Wide Angle Lenses with Negative Outer Lenses 7f<@+&
CioS}K
16 The Petzval Lens; Head-up Display Lenses [@]i_L[
16.1 The Petzval Portrait Lens fUOQ(BGp
16.2 The Petzval Projection Lens ih|&q
16.3 The Petzval with a Field Flattener @4Q/J$
16.4 Very Height Speed Petzval Lenses xqauSW
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems -MORd{GF
/J(~NGT
17 Microscope Objectives :'[ha$
17.1 General Considerations EoS6t
17.2 Classic Objective Design Forms; The Aplanatic Front +6n\5+5
17.3 Flat-Field Objectives Z4m+GFY
17.4 Reflecting Objectives V >~\~H2Y
17.5 The Microscope Objective Designs k ,ezB+
FtDF}
18 Mirror and Catadioptric Systems _{GD\Ai_W
18.1 The Good and Bad Points of Mirrors WHu[A/##']
18.2 The Classic Two-Mirror Systems =GiN~$d
18.3 Catadioptric Systems L[U?{
18.4 Aspheric Correctors and Schmidt Systems B3I0H6O
18.5 Confocal Paraboloids $y UPua/-
18.6 Unobscured Systems nj-LG!"a
18.7 Design of a Schmidt-Cassegrain “from Scratch” e+?;Dc-SJ\
xhB-gG=
19 Infrared and Ultraviolet Systems eQMa9_
19.1 Infrared Optics UMHFq-
19.2 IR Objective Lenses .\3gb6S}
19.3 IR Telescope "#h/sAIs
19.4 Laser Beam Expanders mApl;D X
19,5 Ultraviolet Systems K?yMy,9%Yw
19.6 Microlithographic Lenses }}oIZP\qM
$2a_!/
20 Zoom Lenses n1b^o~agwC
20.1 Zoom Lenses cs[nFfM
20.2 Zoom Lenses for Point and Shoot Cameras `H9!Z$7G
20.3 A 20X Video Zoom Lens >x
]{cb/m
20.4 A Zoom Scanner Lens sWi4+PAM0
20.5 A Possible Zoom Lens Design Procedure
E/gfX
M}
+s_h9
21 Projection TV Lenses and Macro Lenses `9A`pC
21.1 Projection TV Lenses r&~]6
U
21.2 Macro Lenses <<-BQ
l~
6p.y/LMO
22 Scanner/ , Laser Disk and Collimator Lenses ^KV:.up6
22.1 Monochromatic Systems b{
tp
qNm~
22.2 Scanner Lenses ?/(*cA
22.3 Laser Disk, Focusing, and Collimator Lenses Fw^^sB
FS*J8)
23 Tolerance Budgeting 5D mSgP:
23.1 The Tolerance Budget %UG|R:
23.2 Additive Tolerances []?*}o5&>T
23.3 Establishing the Tolerance Budget *=Ma5J.
DW)X3A(^
24 Formulary v7f[$s$m
24.1 Sign Conventions, Symbols, and Definitions g``S SU
24.2 The Cardinal Points gOp81)
24.3 Image Equations Bm6tf}8
24.4 Paraxial Ray Tracing (Surface by Surface) X G5"u
24.5 Invariants om6`>I*
24.6 Paraxial Ray Tracing (Component by Component) *r|13|k
24.7 Two-Componenet Relationships ;Q[E>j?w=
24.8 Third-Order Aberrations – Surface Contributions zXxA"
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs \)2'+R
24.10 Stop Shift Equations \7e4t
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces j_b/66JyN
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 4I.)>+8V
('.I)n
(.b!kfC
Glossary J@J`)
Reference c57`mOe/b
Index