"Modern Lens Design" 2nd Edition by Warren J. Smith sS $- PX
C
w%1B_PyDg
Contents of Modern Lens Design 2nd Edition ]AGJPuX
zSYWNmj&
1 Introduction 4>gMe3]0
1.1 Lens Design Books qu[x=LZ_
1.2 Reference Material <bf^'$l
1.3 Specifications k:w\4Oqd
1.4 Lens Design r^?%N3
1.5 Lens Design Program Features OwQ 9y<v
1.6 About This Book E$FXs~a
yV xR||e
2 Automatic Lens Design MQQ!@I`
2.2 The Merit Function J|Lk::Ri
2.3 Local Minima [JGa3e
2.4 The Landscape Lens f#l/N%VoBZ
2.5 Types of Merit Function (iK0T.
2.6 Stagnation VPf*>ph=
2.7 Generalized Simulated Annealing ~`M GXd"o
2.8 Considerations about Variables for Optimization u+zq:2)H6
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems flLC\
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits n\ma5"n0=\
2.11 Spectral Weighting ?|:!PF*L~z
2.12 How to Get Started }@OykN
&,fBg6A%
3 Improving a Design #cQ[ vE)y
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Lvc*L6
3.2 Glass Changes ( Index and V Values ) 1C=}4^Pu
3.3 Splitting Elements f$k#\=2%
3.4 Separating a Cemented Doublet XTyn[n
3.5 Compounding an Element QH4nb h4
3.6 Vignetting and Its Uses "_C^Bc
3.7 Eliminating a Weak Element; the Concentric Problem y-"*[5{W
3.8 Balancing Aberrations F5J=+Q%8[&
3.9 The Symmetrical Principle 5-w6(uu
3.10 Aspheric Surfaces A{;b^IK
/wCee G,<
4 Evaluation: How Good is This Design /PIU@$DV
4.1 The Uses of a Preliminary Evaluation jjz<V(Sk
4.2 OPD versus Measures of Performance gB<p
4.3 Geometric Blur Spot Size versus Certain Aberrations \nx^=4*yk
4.4 Interpreting MTF - The Modulation Transfer Function e9q/[xMi
4.5 Fabrication Considerations `a2Oj@jP
[/*854
5 Lens Design Data slHlfWHq
5.1 About the Sample Lens Designs q!<`ci,uS
5.2 Lens Prescriptions, Drawings, and Aberration Plots (>>pla^
5.3 Estimating the Potential of a Redesign N:clwmo
5.4 Scaling a Desing, Its Aberrations, and Its MTF mxQS9y
5.5 Notes on the Interpretation of Ray Intercept Plots OR( )D~:n
5.6 Various Evaluation Plot X?Omk, '
5<a)SP 0
6 Telescope Objective )u]<8
6.1 The Thin Airspaced Doublet \J-O b
6.2 Merit Function for a Telescope Objective *`);_EVc
6.3 The Design of an f/7 Cemented Doublet Telescope Objective u3 ?+Hu|*T
6.4 Spherochromatism R8\y|p#c
6.5 Zonal Spherical Aberration 8{JTR|yB
6.6 Induced Aberrations K~@-*8%
6.7 Three-Element Objectives ez86+
6.8 Secondary Spectrum (Apochromatic Systems) kd'qYh
6.9 The Design of an f/7 Apochromatic Triplet =}r&>|rrJ
6.10 The Diffractive Surface in Lens Design c.,:rX0S
6.11 A Final Note p0$K.f|
^
f;pR8
7 Eyepieces and Magnifiers 0} liK
7.1 Eyepieces >H5BY9]I
7.2 A Pair of Magnifier Designs cPI #XPM=
7.3 The Simple, Classical Eyepieces @OFl^U0/
7.4 Design Story of an Eyepiece for a 6*30 Binocular < W/-[ M
7.5 Four-Element Eyepieces g=b[V
7.6 Five-Element Eyepieces tJ.LPgfZ
7.7 Very High Index Eyepiece/Magnifier {)ZbOq2
7.8 Six- and Seven-Element Eyepieces
4m#i4
'|4/aHU
8 Cooke Triplet Anastigmats Lvv`_
8.1 Airspaced Triplet Anastigmats U`<EpO{j|
8.2 Glass Choice .XURI#b
8.3 Vertex Length and Residual Aberrations #&r^~>,#L-
8.4 Other Design Considerations Zi@?g IiX
8.5 A Plastic, Aspheric Triplet Camera Lens 2;[75(l6|}
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet $NG}YOP)@
8.7 Possible Improvement to Our “Basic” Triplet WU#bA|Cf
8.7 The Rear Earth (Lanthanum) Glasses UH%?{>oRh
8.9 Aspherizing the Surfaces in#qV
8.10 Increasing the Element Thickness PM=I
[JMz~~F
9 Split Triplets w:'$Uf8]
wm*`
10 The Tessar, Heliar, and Other Compounded Triplets 9Wx q
10.1 The Classic Tessar _h@7>+vl~
10.2 The Heliar/Pentac }[D~#Z!k
10.3 The Portrait Lens and the Enlarger Lens 8xg:ItJaA0
10.4 Other Compounded Triplets _*bXVJ
]
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar c
!P9`l~MQ
e
d4T_O;
11 Double-Meniscus Anastigmats f:"es: Fb
11.1 Meniscus Components cy^6g?ew
11.2 The Hypergon, Totogon, and Metrogon Yq`r>g
11.3 A Two Element Aspheric Thick Meniscus Camera Lens c4L5"_#`x-
11.4 Protar, Dagor, and Convertible Lenses .yi.GRk
11.5 The Split Dagor nsw.\(#
11.6 The Dogmar a2Q9tt>Q
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ,!%[CpM3
G0> 'H1 Z
12 The Biotar or Double-Gauss Lens tPC8/ntP8
12.1 The Basic Six-Element Version jW2z3.w
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens
6=A++H@
12.3 The Seven-Element Biotar - Split-Rear Singlet aKH\8O4L5
12.4 The Seven-Element Biotar - Broken Contact Front Doublet >?U(w<
12.5 The Seven-Element Biotar - One Compounded Outer Element Rc?wIL)
12.6 The Eight-Element Biotar vj?9X5A_
12.7 A “Doubled Double-Gauss” Relay ?PyI#G
zMtK_ccQ
13 Telephoto Lenses vWe)c J
13.1 The Basic Telephoto Ik;~u8j1e
13.2 Close-up or Macro Lenses Zn#ri 8S
13.3 Telephoto Designs i1 SP
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch "St, 4b
A3'i
-
K.l?R#G`,F
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses e
*;"$7o9
14.1 The Reverse Telephoto Principle ^x4,}'(
14.2 The Basic Retrofocus Lens vhWj_\m
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 'cH),~ z
JguE#ob2
15 Wide Angle Lenses with Negative Outer Lenses 1mI)xDi9
I|Z5*iXqCm
16 The Petzval Lens; Head-up Display Lenses qx0J}6+NlU
16.1 The Petzval Portrait Lens v8 6ls[lzu
16.2 The Petzval Projection Lens QhpE 2ICU
16.3 The Petzval with a Field Flattener v`y{l>r,
16.4 Very Height Speed Petzval Lenses tBrd+}e2*
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems A"_;.e`
m]7yc>uDy
17 Microscope Objectives xiA9X]FB
17.1 General Considerations ih ,8'D4
17.2 Classic Objective Design Forms; The Aplanatic Front wAk oX
17.3 Flat-Field Objectives ^U~YG=!ww
17.4 Reflecting Objectives iOki ZN+d>
17.5 The Microscope Objective Designs J&8l1{gd
p+9vSM #
18 Mirror and Catadioptric Systems &~$^a1D6
18.1 The Good and Bad Points of Mirrors ix7N q7!N
18.2 The Classic Two-Mirror Systems A[oi?.D
18.3 Catadioptric Systems v,+2CVdW
18.4 Aspheric Correctors and Schmidt Systems [|k@Suv |z
18.5 Confocal Paraboloids N<N!it
18.6 Unobscured Systems >-y'N.l^
18.7 Design of a Schmidt-Cassegrain “from Scratch” Bj%{PK
?1OS%RBF
19 Infrared and Ultraviolet Systems H1hj` '\"<
19.1 Infrared Optics J]N-^ld\\
19.2 IR Objective Lenses _4%+TN6z
19.3 IR Telescope wk8XD(&
19.4 Laser Beam Expanders 3b#KrN'
19,5 Ultraviolet Systems I"T_<
19.6 Microlithographic Lenses #<v3G)|aS
= UTv
20 Zoom Lenses lQ!6n
20.1 Zoom Lenses x]y~KbdeB
20.2 Zoom Lenses for Point and Shoot Cameras mKxQU0 `
20.3 A 20X Video Zoom Lens $stJ+uh
20.4 A Zoom Scanner Lens zJdlHa{
20.5 A Possible Zoom Lens Design Procedure ajkRL|^
42#
rhgW
21 Projection TV Lenses and Macro Lenses ?LvZEiJ
21.1 Projection TV Lenses ZZl)p\r
21.2 Macro Lenses :j?Lil%R
v9M;W+J
22 Scanner/ , Laser Disk and Collimator Lenses bhuA,}
22.1 Monochromatic Systems 7U?x8%H*
22.2 Scanner Lenses O]^E%;(]}i
22.3 Laser Disk, Focusing, and Collimator Lenses c(YNv4*X
'H*S-d6V
23 Tolerance Budgeting q1NAKcA<U
23.1 The Tolerance Budget 6\b B#a
23.2 Additive Tolerances Q !S"=2
23.3 Establishing the Tolerance Budget 3&3S*1b-H
.D)'ZY
24 Formulary a#j0N5<Nl
24.1 Sign Conventions, Symbols, and Definitions ir%/9=^d
24.2 The Cardinal Points M@s2T|bQw
24.3 Image Equations P"3{s+ r
24.4 Paraxial Ray Tracing (Surface by Surface) 4HkOg)a
24.5 Invariants WI}P(!h\J
24.6 Paraxial Ray Tracing (Component by Component) _?O'65
24.7 Two-Componenet Relationships Bv!j.$0d{
24.8 Third-Order Aberrations – Surface Contributions aSKI%<?xN
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs #.FtPR
24.10 Stop Shift Equations =wI,H@
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces }1d
6d3b
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) _~5{l_v|I
_j<46^
kQ{pFFO
Glossary vxZz9+UbF
Reference h7I_{v8
Index