"Modern Lens Design" 2nd Edition by Warren J. Smith C,vc
aC?
!&jgcw/E
Contents of Modern Lens Design 2nd Edition :gaeb8`t
~<[5uZIo
1 Introduction dS_)ll.6z
1.1 Lens Design Books H6S vU
1.2 Reference Material qq3Qd,$Z
1.3 Specifications =1OAy`8
1.4 Lens Design `oRs-,d|<
1.5 Lens Design Program Features ,bp pM
1.6 About This Book B5H&DqWzr
wK`ieHmp
2 Automatic Lens Design Is6 _
2.2 The Merit Function FDs^S)B
2.3 Local Minima 2$W,R/CLh
2.4 The Landscape Lens 'Qq_Xn8
2.5 Types of Merit Function UMi`u6#
2.6 Stagnation iA{jKk=
2.7 Generalized Simulated Annealing 7RC096 ?}
2.8 Considerations about Variables for Optimization 9AddF*B
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems *[~o~e/YCb
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 4FE@s0M,
2.11 Spectral Weighting t:sq*d
2.12 How to Get Started =*:_swd
bKMR7&e.Ep
3 Improving a Design v;}`?@G
3.1 Lens Design Tip Sheet: Standard Improvement Techniques C9Z\G 3
3.2 Glass Changes ( Index and V Values ) P^<0d'(
3.3 Splitting Elements "zIq)PY
3.4 Separating a Cemented Doublet >g"M.gW
3.5 Compounding an Element 4zfRD`;
3.6 Vignetting and Its Uses ZWhmO=b!
3.7 Eliminating a Weak Element; the Concentric Problem $#ju?B~
3.8 Balancing Aberrations J1Ki2I=
3.9 The Symmetrical Principle ~& WN)r'4y
3.10 Aspheric Surfaces n$|c{2]=
]v\egfW,W
4 Evaluation: How Good is This Design 46P6Bwobh
4.1 The Uses of a Preliminary Evaluation SM#S/|.]
4.2 OPD versus Measures of Performance ^0tf1pV2
4.3 Geometric Blur Spot Size versus Certain Aberrations K_+;"G
4.4 Interpreting MTF - The Modulation Transfer Function i$^B-
4.5 Fabrication Considerations =_m9so
SM /ykk
5 Lens Design Data fxoi<!|iGY
5.1 About the Sample Lens Designs kAB+28A
5.2 Lens Prescriptions, Drawings, and Aberration Plots |*c\6 :
5.3 Estimating the Potential of a Redesign 7kX$wQZ_
5.4 Scaling a Desing, Its Aberrations, and Its MTF Am4^v?q
5.5 Notes on the Interpretation of Ray Intercept Plots KA-/k@1&
5.6 Various Evaluation Plot "`i:)E t
7Cd_zZ
6 Telescope Objective g?[&0r1
6.1 The Thin Airspaced Doublet s\C8t0C
6.2 Merit Function for a Telescope Objective E_D ^O
6.3 The Design of an f/7 Cemented Doublet Telescope Objective sL AuR
6.4 Spherochromatism iA3>X-x
6.5 Zonal Spherical Aberration euj8p:+X
6.6 Induced Aberrations 8lWH=kA\
6.7 Three-Element Objectives >'}=.3\
6.8 Secondary Spectrum (Apochromatic Systems) 'uKkl(==%
6.9 The Design of an f/7 Apochromatic Triplet I' ! r
6.10 The Diffractive Surface in Lens Design RE>ks[
6.11 A Final Note V@_-H
gg
Y%0d\{@a
7 Eyepieces and Magnifiers `kNi*I^
7.1 Eyepieces a\{1UD
7.2 A Pair of Magnifier Designs I& M36f
7.3 The Simple, Classical Eyepieces phgexAq
7.4 Design Story of an Eyepiece for a 6*30 Binocular `e $n$Bh
7.5 Four-Element Eyepieces @<OO
7.6 Five-Element Eyepieces hH1lgc
7.7 Very High Index Eyepiece/Magnifier x9)aBB
7.8 Six- and Seven-Element Eyepieces ran^te^Ks(
J}(6>iuQY?
8 Cooke Triplet Anastigmats GjeUUmr
8.1 Airspaced Triplet Anastigmats hr[B^?6
8.2 Glass Choice a4T~\\,dZ>
8.3 Vertex Length and Residual Aberrations 2<'`^AO@
8.4 Other Design Considerations k6O.H
8.5 A Plastic, Aspheric Triplet Camera Lens JYwyR++uo
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet +%Lt". o
8.7 Possible Improvement to Our “Basic” Triplet [Y$5zeA
8.7 The Rear Earth (Lanthanum) Glasses 7}?k^x,1
8.9 Aspherizing the Surfaces Pknc[h},
8.10 Increasing the Element Thickness OQ(D5GR:4
WGh. ;-
9 Split Triplets izPh1YA
hI|/>4<
10 The Tessar, Heliar, and Other Compounded Triplets g5[ D&
10.1 The Classic Tessar 6P~aW
10.2 The Heliar/Pentac y !<'rg
10.3 The Portrait Lens and the Enlarger Lens $T?*0"Mj[
10.4 Other Compounded Triplets q]6_rY.
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar [IX*sr
>*dQqJI
11 Double-Meniscus Anastigmats |e*Gz D
11.1 Meniscus Components M%$DT
11.2 The Hypergon, Totogon, and Metrogon LY-lTr@A^
11.3 A Two Element Aspheric Thick Meniscus Camera Lens A3AP51
!
11.4 Protar, Dagor, and Convertible Lenses v@8S5KJ
11.5 The Split Dagor B(j02<-
11.6 The Dogmar )Fqy%uR8
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 5M%,N-P^
>dpbCPJ9[
12 The Biotar or Double-Gauss Lens iOT)0@f'
12.1 The Basic Six-Element Version r^$\t0h(U8
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens [kbC'Eh*
12.3 The Seven-Element Biotar - Split-Rear Singlet D@8jGcz62
12.4 The Seven-Element Biotar - Broken Contact Front Doublet 2Co@+I[,4&
12.5 The Seven-Element Biotar - One Compounded Outer Element 3{N\A5~
12.6 The Eight-Element Biotar aje^Z=]
12.7 A “Doubled Double-Gauss” Relay 6*ZU}xT
Fr-[UZ~V
13 Telephoto Lenses U~aWG\h#X
13.1 The Basic Telephoto [tUv*jw %
13.2 Close-up or Macro Lenses - $U@By<SJ
13.3 Telephoto Designs )ll?-FZ
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch wms1IV%;
Ko#4z%Yq
JE0?@PI$
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses I-xwJi9?,
14.1 The Reverse Telephoto Principle cDCJ]iDs
14.2 The Basic Retrofocus Lens ]}Pl%.
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses $`|5/,M%QN
z@zD .
15 Wide Angle Lenses with Negative Outer Lenses
jm[}M
?>sQF4 V"
16 The Petzval Lens; Head-up Display Lenses A j,]n>{
16.1 The Petzval Portrait Lens eY
T8$
16.2 The Petzval Projection Lens mA&=q_gS
16.3 The Petzval with a Field Flattener 1h2H1gy5I3
16.4 Very Height Speed Petzval Lenses
n
]w7Zj
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 2s 7mI'
wG+=}1X
17 Microscope Objectives vF"c
17.1 General Considerations [*<.?9n)or
17.2 Classic Objective Design Forms; The Aplanatic Front n!a<:]b<
17.3 Flat-Field Objectives uJgI<l'|e3
17.4 Reflecting Objectives _R)&k%i}
17.5 The Microscope Objective Designs h1#S+k
=yo{[&Jz
18 Mirror and Catadioptric Systems RU6KIg{H
18.1 The Good and Bad Points of Mirrors [g#s&bF
18.2 The Classic Two-Mirror Systems u+i (";\
18.3 Catadioptric Systems c<?[d!vI
18.4 Aspheric Correctors and Schmidt Systems +@0TMK,P
18.5 Confocal Paraboloids _?.\Xc
18.6 Unobscured Systems 5:UyUB
18.7 Design of a Schmidt-Cassegrain “from Scratch” u)v$JpNE
y0<Uu
19 Infrared and Ultraviolet Systems `)$`-Pw*
19.1 Infrared Optics <s_=-"
il
19.2 IR Objective Lenses `m%:rE,
19.3 IR Telescope , ;%yf?
19.4 Laser Beam Expanders pYt/378w
19,5 Ultraviolet Systems Nsn~@.UuSW
19.6 Microlithographic Lenses 8V-,Xig;`
Gg|M+M?+
20 Zoom Lenses "}@i+oS
20.1 Zoom Lenses (= 9wo
20.2 Zoom Lenses for Point and Shoot Cameras Vv8_\^g]
20.3 A 20X Video Zoom Lens X8b|]Nr
20.4 A Zoom Scanner Lens qgx?"$ Z
20.5 A Possible Zoom Lens Design Procedure X"j>=DEX
X D) 8?
21 Projection TV Lenses and Macro Lenses |g<* Rk0
21.1 Projection TV Lenses yxwW j>c
21.2 Macro Lenses pj!:[d
z1vw'VT>
22 Scanner/ , Laser Disk and Collimator Lenses (bv,02
22.1 Monochromatic Systems NG" yPn
22.2 Scanner Lenses DI,K(_@G
22.3 Laser Disk, Focusing, and Collimator Lenses A2NF<ZsD
-f9]v9|l
23 Tolerance Budgeting @A{m5h
23.1 The Tolerance Budget h%TLD[[/jr
23.2 Additive Tolerances WhFS2Jl0
23.3 Establishing the Tolerance Budget e3v5,.
H-I{-Fm
24 Formulary 6):Xzx,
24.1 Sign Conventions, Symbols, and Definitions ,gMy@
24.2 The Cardinal Points (e9fm|n!)|
24.3 Image Equations R*9NR,C
24.4 Paraxial Ray Tracing (Surface by Surface) pZk6w1d!
24.5 Invariants D. Kqc
24.6 Paraxial Ray Tracing (Component by Component) 02\JzBU
24.7 Two-Componenet Relationships =X-Tcj?3g
24.8 Third-Order Aberrations – Surface Contributions yfEb
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs nWJ:=JQ i"
24.10 Stop Shift Equations zE|Wn3_sd
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ufrqsv]=
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ghAi{@s$)
mI7~c;~
\?Mf _
Glossary -.iNNM&a
Reference
oY=1C}
Index