"Modern Lens Design" 2nd Edition by Warren J. Smith P{: 5i%qC
O3#eQs
Contents of Modern Lens Design 2nd Edition x`2du/
C
Q|U
[|U
1 Introduction ^f,%dM=i=
1.1 Lens Design Books l|;]"&|_]c
1.2 Reference Material >Nx4 +|
1.3 Specifications h2i1w^f
1.4 Lens Design kE[R9RS!
1.5 Lens Design Program Features oR3t vw.
1.6 About This Book lB8gD
eF' l_*
2 Automatic Lens Design }'n]C| gZ
2.2 The Merit Function 2lqy <o
2.3 Local Minima o*oFCR]j
2.4 The Landscape Lens k<NxI\s8]
2.5 Types of Merit Function K}'?#a(aX=
2.6 Stagnation A\13*4:;l
2.7 Generalized Simulated Annealing g0-rQA
2.8 Considerations about Variables for Optimization /a6i`
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems \eRct_
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits \m:('^\6o
2.11 Spectral Weighting EG3u)}vI
2.12 How to Get Started 0]^gT'
iO2jT+i
3 Improving a Design aP"!}*
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Wv~&Qh}
3.2 Glass Changes ( Index and V Values ) 8NTE`l=>/
3.3 Splitting Elements _>8Q{N\-
{
3.4 Separating a Cemented Doublet o8NRu7@?
3.5 Compounding an Element u1\r:q
3.6 Vignetting and Its Uses yD@eT:lyi
3.7 Eliminating a Weak Element; the Concentric Problem oY7jj=z#T
3.8 Balancing Aberrations Iv*u#]{t
3.9 The Symmetrical Principle py'xBi6}v
3.10 Aspheric Surfaces \Pe+]4R-Xo
:H+8E5
4 Evaluation: How Good is This Design bfy=
4.1 The Uses of a Preliminary Evaluation `;j$]
4.2 OPD versus Measures of Performance r\)bN4-g
4.3 Geometric Blur Spot Size versus Certain Aberrations IaU%L6Q]
4.4 Interpreting MTF - The Modulation Transfer Function 2IUd?i3~l
4.5 Fabrication Considerations tf[)| /M
| IS$Om
5 Lens Design Data q;7DH4;t
5.1 About the Sample Lens Designs c%1{l]
5.2 Lens Prescriptions, Drawings, and Aberration Plots )ybF@emc
5.3 Estimating the Potential of a Redesign OB*V4Yv
5.4 Scaling a Desing, Its Aberrations, and Its MTF S0}=uL#dt
5.5 Notes on the Interpretation of Ray Intercept Plots 8pZ Ogh
5.6 Various Evaluation Plot {w7/M]m-
:\y' ?d- Q
6 Telescope Objective 1+YqdDqQ
6.1 The Thin Airspaced Doublet 0sTR`Xk
6.2 Merit Function for a Telescope Objective 2(m#WK7>F
6.3 The Design of an f/7 Cemented Doublet Telescope Objective aPQxpK?
6.4 Spherochromatism NFR>[L V
6.5 Zonal Spherical Aberration P%N)]b<c*
6.6 Induced Aberrations <1
;pyw
y
6.7 Three-Element Objectives
|.L_c"Bc
6.8 Secondary Spectrum (Apochromatic Systems) vhcp[=e :
6.9 The Design of an f/7 Apochromatic Triplet .8T0OQ4
6.10 The Diffractive Surface in Lens Design 4S[UJ%
6.11 A Final Note (t@:dW
d[XMQX
7 Eyepieces and Magnifiers c] t@3 m
7.1 Eyepieces ^)(tO$S
7.2 A Pair of Magnifier Designs ),|z4~
7.3 The Simple, Classical Eyepieces $48Z>ij?f
7.4 Design Story of an Eyepiece for a 6*30 Binocular +_+j"BT
7.5 Four-Element Eyepieces M|fV7g
7.6 Five-Element Eyepieces BRM!g9
7.7 Very High Index Eyepiece/Magnifier |qz%6w=
7.8 Six- and Seven-Element Eyepieces k+vfZ9bD(J
QHc([%oV
8 Cooke Triplet Anastigmats AWKJ@&pA9m
8.1 Airspaced Triplet Anastigmats q6<P\CSHy<
8.2 Glass Choice
SvrUXf
8.3 Vertex Length and Residual Aberrations /?($W|9+l
8.4 Other Design Considerations -3guuT3x\
8.5 A Plastic, Aspheric Triplet Camera Lens DUh\x>^
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet *>1^q9M
8.7 Possible Improvement to Our “Basic” Triplet F\L!.B
8.7 The Rear Earth (Lanthanum) Glasses _l"nwEs
8.9 Aspherizing the Surfaces '2ZvK
8.10 Increasing the Element Thickness y%spI/(
L"n)fe$
9 Split Triplets ;_2+Y^Qb
)nFyHAy-
10 The Tessar, Heliar, and Other Compounded Triplets t,IOq[Vtk
10.1 The Classic Tessar ]5Dh<QY&.
10.2 The Heliar/Pentac Iy&,1CI"]
10.3 The Portrait Lens and the Enlarger Lens v^vi *c
10.4 Other Compounded Triplets \4^rb?B
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar Rn]xxa'
yMTO 5~U{
11 Double-Meniscus Anastigmats :7mHPe}(
11.1 Meniscus Components w( _42)v]g
11.2 The Hypergon, Totogon, and Metrogon Jazg n5
11.3 A Two Element Aspheric Thick Meniscus Camera Lens l;L_A@B<
11.4 Protar, Dagor, and Convertible Lenses k~ByICE
11.5 The Split Dagor 0H]{,mVs
11.6 The Dogmar /jGV[_Q=P
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Wpi35JrC
|_>^vW1f
12 The Biotar or Double-Gauss Lens U+@U/s%8
12.1 The Basic Six-Element Version y&-QLX L
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens "WUS?Q
12.3 The Seven-Element Biotar - Split-Rear Singlet ~!!|#A)W
12.4 The Seven-Element Biotar - Broken Contact Front Doublet K,$rG%czX
12.5 The Seven-Element Biotar - One Compounded Outer Element $LFL4Q
12.6 The Eight-Element Biotar /XEW]/4
12.7 A “Doubled Double-Gauss” Relay }v4dOGc?
q!?*M?Oz
13 Telephoto Lenses b*M?\ aA
13.1 The Basic Telephoto O#^H.B
13.2 Close-up or Macro Lenses \7"|'fz
13.3 Telephoto Designs I
"~.p='
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch H(r D*R[
)1KyUQ\e
i i-AE L
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses ;}"Eqq:
14.1 The Reverse Telephoto Principle {svo!pN:
14.2 The Basic Retrofocus Lens )<:TpMdUk
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Y`Io}h G$
G0Qw&
mqF
15 Wide Angle Lenses with Negative Outer Lenses IhYR4?e
ZcQu9XDIt
16 The Petzval Lens; Head-up Display Lenses <7`zc7c]#
16.1 The Petzval Portrait Lens $i5J}
16.2 The Petzval Projection Lens $
VP1(C
16.3 The Petzval with a Field Flattener >[,eK=
16.4 Very Height Speed Petzval Lenses I4{xQI
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems `+"(GaZ
X["xC3 i
17 Microscope Objectives #c>GjUJ.w
17.1 General Considerations $?G@ijk,
17.2 Classic Objective Design Forms; The Aplanatic Front ng"=vmu
17.3 Flat-Field Objectives hN
&?x5aC>
17.4 Reflecting Objectives }:
HG)V
17.5 The Microscope Objective Designs cN8Fn4gq
>m,hna]RZ
18 Mirror and Catadioptric Systems AXW.`~ 4
18.1 The Good and Bad Points of Mirrors t'l4$}(
18.2 The Classic Two-Mirror Systems IrqM_OjC
18.3 Catadioptric Systems bIAE?D
18.4 Aspheric Correctors and Schmidt Systems !}#> ky!t
18.5 Confocal Paraboloids =abcLrf2G
18.6 Unobscured Systems _>Raw
18.7 Design of a Schmidt-Cassegrain “from Scratch” ExS5RV@v'
-HG.GA
19 Infrared and Ultraviolet Systems nQjpJ
/=
19.1 Infrared Optics Y \-W`
19.2 IR Objective Lenses 9Yv:6@. F
19.3 IR Telescope *WQ?r&[_'
19.4 Laser Beam Expanders Pc`d]*BYi
19,5 Ultraviolet Systems =GPXuo
19.6 Microlithographic Lenses Og/aTR<;=
b-sN#'TDg
20 Zoom Lenses 7v ZD
20.1 Zoom Lenses q"u, Tnc;
20.2 Zoom Lenses for Point and Shoot Cameras (WyNO QO'
20.3 A 20X Video Zoom Lens jtP*C_Scv/
20.4 A Zoom Scanner Lens 1^![8>u"
20.5 A Possible Zoom Lens Design Procedure iZ-R%- }B
>u&D@7~c
21 Projection TV Lenses and Macro Lenses
usB*Wn8
21.1 Projection TV Lenses A'DFY {
21.2 Macro Lenses %8FfP5#
i[!|0U`p
22 Scanner/ , Laser Disk and Collimator Lenses sFTAE1|
22.1 Monochromatic Systems E EDFyZ
22.2 Scanner Lenses rPaJ<>Kz
22.3 Laser Disk, Focusing, and Collimator Lenses ?e$&=FC0;
Lt't
23 Tolerance Budgeting )!2@v@SQ
23.1 The Tolerance Budget 9&n9J^3L
23.2 Additive Tolerances 4XjwU`
23.3 Establishing the Tolerance Budget =:gKh
Rql/@j`JX
24 Formulary t0m;tb bg
24.1 Sign Conventions, Symbols, and Definitions }qn>#ETi
24.2 The Cardinal Points ,t9EL 21
24.3 Image Equations h;gc5"mG
24.4 Paraxial Ray Tracing (Surface by Surface) "?NDN4l*
24.5 Invariants gwoe1:F:J
24.6 Paraxial Ray Tracing (Component by Component) u7L?9
24.7 Two-Componenet Relationships @7twe;07r
24.8 Third-Order Aberrations – Surface Contributions j=l2\W#}
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs )@NFV*@I
24.10 Stop Shift Equations WNGX`V,d
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces IzpE|8l
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) vB8$Qx\J
&n6{wtBP
d`^3fr'.4A
Glossary 1K#>^!?M
Reference I2[Z0G@&=
Index