"Modern Lens Design" 2nd Edition by Warren J. Smith ?Lquf&`vP
AbOF/g)C
Contents of Modern Lens Design 2nd Edition 3TnrPO1E
5}'W8gV?
1 Introduction EpH\;25u
1.1 Lens Design Books Jw
-3G3h
1.2 Reference Material p) m0\
1.3 Specifications %_ Vj'z~T
1.4 Lens Design nW_cjYS%
1.5 Lens Design Program Features :sJQ r._L
1.6 About This Book
o+FDkqEN
bG!/%,s
2 Automatic Lens Design iiTt{ab\Y
2.2 The Merit Function e6I7N?j
2.3 Local Minima @@#h-k%k-
2.4 The Landscape Lens yz^Rm2$f9
2.5 Types of Merit Function L<ET"&b;4
2.6 Stagnation ze#r/j;sw
2.7 Generalized Simulated Annealing !,JV<(7k
2.8 Considerations about Variables for Optimization =$F<Ac;&
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems Amj'$G|+hj
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits c#`&uLp
2.11 Spectral Weighting R2f^dt^
2.12 How to Get Started \~I>@SG2W+
[ih^VlZ
3 Improving a Design lWk/vj<5
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Fz@9
@
3.2 Glass Changes ( Index and V Values ) e4Q2$Q@b
3.3 Splitting Elements <4%vl+qW
3.4 Separating a Cemented Doublet fnJt8Y4
3.5 Compounding an Element E8b:MY
3.6 Vignetting and Its Uses OH6-\U'.Z
3.7 Eliminating a Weak Element; the Concentric Problem u\o~'Jz
3.8 Balancing Aberrations 2 UPG8]
3.9 The Symmetrical Principle d2X?^
3.10 Aspheric Surfaces w'a3=_nW
LHd9q^D
4 Evaluation: How Good is This Design F4=V*/7
4.1 The Uses of a Preliminary Evaluation p?'&P!
4.2 OPD versus Measures of Performance "{M?,jP#
4.3 Geometric Blur Spot Size versus Certain Aberrations "g&hsp+i"A
4.4 Interpreting MTF - The Modulation Transfer Function ~Nn}FNe
4.5 Fabrication Considerations @k||gQqIB
m,PiuR>
5 Lens Design Data Mk!bmFZOZ
5.1 About the Sample Lens Designs lHc9D
5.2 Lens Prescriptions, Drawings, and Aberration Plots J)P7QTC
5.3 Estimating the Potential of a Redesign IRT0
5.4 Scaling a Desing, Its Aberrations, and Its MTF 1SSS0 &
5.5 Notes on the Interpretation of Ray Intercept Plots 80 ckh
5.6 Various Evaluation Plot q:u,)6
7(C:ty9
6 Telescope Objective WlmkM?@
6.1 The Thin Airspaced Doublet 40HhMTZ0-
6.2 Merit Function for a Telescope Objective )_SpY\J
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ^JAp#?N^9
6.4 Spherochromatism 2$FH+wuW
6.5 Zonal Spherical Aberration l;}3J3/qq]
6.6 Induced Aberrations 2&XNT-Qm
6.7 Three-Element Objectives
>Ft)v
6.8 Secondary Spectrum (Apochromatic Systems) |G/WS0
6.9 The Design of an f/7 Apochromatic Triplet kbZpi`w
6.10 The Diffractive Surface in Lens Design $0|`h)&
6.11 A Final Note cc 0Tb
S
^$!n,
7 Eyepieces and Magnifiers kO4'|<
7.1 Eyepieces l"/E,X
7.2 A Pair of Magnifier Designs 8&yI1XM|
7.3 The Simple, Classical Eyepieces c&C*'c-r
7.4 Design Story of an Eyepiece for a 6*30 Binocular C=qL0
7.5 Four-Element Eyepieces izs=5
7.6 Five-Element Eyepieces 3:T~$M`]
7.7 Very High Index Eyepiece/Magnifier Ko0?c.l
7.8 Six- and Seven-Element Eyepieces q7<=1r+
)YW"Zo8~!1
8 Cooke Triplet Anastigmats |5jrl|
8.1 Airspaced Triplet Anastigmats a(X V~o
8.2 Glass Choice \,'4eV
8.3 Vertex Length and Residual Aberrations '}IGV`c
8.4 Other Design Considerations KW$.Yy
8.5 A Plastic, Aspheric Triplet Camera Lens kPoz&e_@
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet H!'4A&
8.7 Possible Improvement to Our “Basic” Triplet QseV\; z
8.7 The Rear Earth (Lanthanum) Glasses 3aU5rbi|B
8.9 Aspherizing the Surfaces &j,#5f(
8.10 Increasing the Element Thickness "Mz#1Laby`
5zh6l+S[
9 Split Triplets "!CVm{7[
wY ??#pS
10 The Tessar, Heliar, and Other Compounded Triplets Uz~B`
10.1 The Classic Tessar 'T$Cw\F&
10.2 The Heliar/Pentac aRElk&M
10.3 The Portrait Lens and the Enlarger Lens 4>OS2b`.;
10.4 Other Compounded Triplets wE"lk
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar .)=*Yr M
-<9Qez)y
11 Double-Meniscus Anastigmats /nsBUM[;
11.1 Meniscus Components 3Gr"YG{,
11.2 The Hypergon, Totogon, and Metrogon #-PMREgO
11.3 A Two Element Aspheric Thick Meniscus Camera Lens K\xnQeS<W
11.4 Protar, Dagor, and Convertible Lenses crOSr/I$
11.5 The Split Dagor w>8kBQ?b
11.6 The Dogmar hW'b'x<
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens l0;u$
wEwRW
12 The Biotar or Double-Gauss Lens .c&&@>m@.
12.1 The Basic Six-Element Version Thu_`QP^
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens otfmM]f
12.3 The Seven-Element Biotar - Split-Rear Singlet ju3@F8AI
12.4 The Seven-Element Biotar - Broken Contact Front Doublet SjpCf8Z(
12.5 The Seven-Element Biotar - One Compounded Outer Element ^*4#ZvpG2
12.6 The Eight-Element Biotar 9C2pGfEbn}
12.7 A “Doubled Double-Gauss” Relay \!30t1EZ
8_w6% md
13 Telephoto Lenses 1LSJy*yY
13.1 The Basic Telephoto }!k?.(hpE
13.2 Close-up or Macro Lenses )B+o
F7
13.3 Telephoto Designs y9]7LETv\M
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch `GBJa k
tmoCy0qWz
\)wVO*9*0
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses p7Zeudmj
14.1 The Reverse Telephoto Principle Q:7P
/
14.2 The Basic Retrofocus Lens :h(3Ep
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses &Ep$<kx8
^ H2TSaJ;
15 Wide Angle Lenses with Negative Outer Lenses UMBeY[?
o6|-
:u5_/
16 The Petzval Lens; Head-up Display Lenses ;`c:Law4
16.1 The Petzval Portrait Lens rA8NE>
16.2 The Petzval Projection Lens bZgo}`o%
16.3 The Petzval with a Field Flattener UtJfO`m9P
16.4 Very Height Speed Petzval Lenses J Q*~le*
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems tj00xYY
3AR'Zvn
17 Microscope Objectives 5xnEkg4q4
17.1 General Considerations %La/E#
17.2 Classic Objective Design Forms; The Aplanatic Front
*L>usLh
17.3 Flat-Field Objectives `FNU-
I4s
17.4 Reflecting Objectives -{JReplc
17.5 The Microscope Objective Designs n%;t Va
sA: /!9
18 Mirror and Catadioptric Systems rGt]YG#C
18.1 The Good and Bad Points of Mirrors }3XjP55
18.2 The Classic Two-Mirror Systems ^mI`P}5Y
18.3 Catadioptric Systems @W(,|xES
18.4 Aspheric Correctors and Schmidt Systems 0e]J2>
18.5 Confocal Paraboloids >2}*L"YC
18.6 Unobscured Systems 6rG7/
18.7 Design of a Schmidt-Cassegrain “from Scratch” FU}- .Ki
=8p[ (<F=
19 Infrared and Ultraviolet Systems #&S<{75A
19.1 Infrared Optics n
Zx^ej\
19.2 IR Objective Lenses +U<Ae^V
19.3 IR Telescope ci(BPnQ
19.4 Laser Beam Expanders
b^8"EBo
19,5 Ultraviolet Systems 5y0LkuRR:
19.6 Microlithographic Lenses \4 t;{_
1_}k)(n
20 Zoom Lenses 5=8_Le
20.1 Zoom Lenses =5%}CbUU)4
20.2 Zoom Lenses for Point and Shoot Cameras l$!NEOK
20.3 A 20X Video Zoom Lens zCwb>v
20.4 A Zoom Scanner Lens X)9|ZF2`
20.5 A Possible Zoom Lens Design Procedure c1f`?i}.
>6;RTN/P2
21 Projection TV Lenses and Macro Lenses L#IY6t
21.1 Projection TV Lenses &hhxp1B
21.2 Macro Lenses *(*XNd||
2fUz}w (
22 Scanner/ , Laser Disk and Collimator Lenses ,(#n8|q4
22.1 Monochromatic Systems sD<8-n
22.2 Scanner Lenses uC`)?f*I
22.3 Laser Disk, Focusing, and Collimator Lenses 3e^'mT
yLt?XhRlp
23 Tolerance Budgeting -32.g\]
23.1 The Tolerance Budget ."v&?o
Ck]
23.2 Additive Tolerances sE(mK<{pk
23.3 Establishing the Tolerance Budget qSL~A-
@L^30>?l
24 Formulary *_yp]z"
24.1 Sign Conventions, Symbols, and Definitions *icxK
24.2 The Cardinal Points Wuji'sxTs
24.3 Image Equations ( e(<4-&
24.4 Paraxial Ray Tracing (Surface by Surface) en gh3TZC
24.5 Invariants _$4vk
24.6 Paraxial Ray Tracing (Component by Component) 8,(5Q
24.7 Two-Componenet Relationships }Rq-IRa'
24.8 Third-Order Aberrations – Surface Contributions V|dKKb[Lve
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs =
P{]3K
24.10 Stop Shift Equations N+ R/ti
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces <^jW
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ='r4zz
[PW*|U
%(wa~:m+S-
Glossary {mV,bg,}~
Reference y#;@~S1W
Index