"Modern Lens Design" 2nd Edition by Warren J. Smith @aPu}Hi
sT"tS>
Contents of Modern Lens Design 2nd Edition \S@=zII_
`::(jW.KO
1 Introduction =`.5b:e
1.1 Lens Design Books t:j07 ,1~
1.2 Reference Material ^)P5(fJ
1.3 Specifications <IkD=X
1.4 Lens Design K}*p(1$u
1.5 Lens Design Program Features 1X_!%Z
1.6 About This Book iO= uXN1g
mt6uW+t/
2 Automatic Lens Design xA1pDrfC/
2.2 The Merit Function DBrzw+;e3
2.3 Local Minima snzH}$Ls
2.4 The Landscape Lens v&/-&(+
2.5 Types of Merit Function D2*Q1n
2.6 Stagnation DdZ_2B2
2.7 Generalized Simulated Annealing o6yZ@R
2.8 Considerations about Variables for Optimization hD.wKX?oO
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems i2R]lE8
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 5N</Z6f'o
2.11 Spectral Weighting M
#RuI%
2.12 How to Get Started ia.B@u1/
+#"Ic:
3 Improving a Design *wZV*)}
3.1 Lens Design Tip Sheet: Standard Improvement Techniques u2m{Yx|
3.2 Glass Changes ( Index and V Values ) 2
]6u
Be
3.3 Splitting Elements BCDf9]X
3.4 Separating a Cemented Doublet 0J,d9a [1
3.5 Compounding an Element !F s)"?
3.6 Vignetting and Its Uses 0lq4
3.7 Eliminating a Weak Element; the Concentric Problem jl%eO.
3.8 Balancing Aberrations *ww(5 t
3.9 The Symmetrical Principle D7'0o`|
3.10 Aspheric Surfaces (dnc7KrM
'Bn_'w~j{
4 Evaluation: How Good is This Design ED_5V@
4.1 The Uses of a Preliminary Evaluation /faP]J)
4.2 OPD versus Measures of Performance MBrVh6z>
4.3 Geometric Blur Spot Size versus Certain Aberrations |y=F (6Z
4.4 Interpreting MTF - The Modulation Transfer Function Jy
NY *
4.5 Fabrication Considerations l]=$<
s|`)'
5 Lens Design Data otVdx&%]
5.1 About the Sample Lens Designs ,colGth54
5.2 Lens Prescriptions, Drawings, and Aberration Plots kF~e3A7C
5.3 Estimating the Potential of a Redesign
:@'0)7
5.4 Scaling a Desing, Its Aberrations, and Its MTF P[K
T
5.5 Notes on the Interpretation of Ray Intercept Plots m&c(N
5.6 Various Evaluation Plot $ =a$z"
nM}`H'0
6 Telescope Objective i_^NbC
6.1 The Thin Airspaced Doublet 9uoj3Rh<
6.2 Merit Function for a Telescope Objective TmH13N]
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ;XuEMq,Di
6.4 Spherochromatism ITPpT
6.5 Zonal Spherical Aberration <T[ui
6.6 Induced Aberrations p arG
6.7 Three-Element Objectives ``CADiM:S
6.8 Secondary Spectrum (Apochromatic Systems) >5W"a?(
6.9 The Design of an f/7 Apochromatic Triplet N2Hb19/k
6.10 The Diffractive Surface in Lens Design Y\S^DJy
6.11 A Final Note ]a~LA7VHO
S*@0%|Q4r
7 Eyepieces and Magnifiers Tz~ftf
7.1 Eyepieces l~c>jm8.
7.2 A Pair of Magnifier Designs V2skr_1
7.3 The Simple, Classical Eyepieces X}^gmu<Vla
7.4 Design Story of an Eyepiece for a 6*30 Binocular ;itg>\p3
7.5 Four-Element Eyepieces RL8wSK
7.6 Five-Element Eyepieces cYS+XBz
7.7 Very High Index Eyepiece/Magnifier o:*iT=l
7.8 Six- and Seven-Element Eyepieces zwK;6&(W
,6pH *b$
8 Cooke Triplet Anastigmats 8 z7,W3b
8.1 Airspaced Triplet Anastigmats Lwk-
8.2 Glass Choice 1"PE@!]
8.3 Vertex Length and Residual Aberrations Q(7l<z
8.4 Other Design Considerations (j"MsCwE
8.5 A Plastic, Aspheric Triplet Camera Lens >xgd<
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet )S?}huX
8.7 Possible Improvement to Our “Basic” Triplet y5h[^K3
8.7 The Rear Earth (Lanthanum) Glasses YNk|UwJi
8.9 Aspherizing the Surfaces IQv>{h}
8.10 Increasing the Element Thickness L@GD$F=<0
5(Oc"0''H
9 Split Triplets I/|n
ma/ $
_.LWc^Sg
10 The Tessar, Heliar, and Other Compounded Triplets Okc*)crw
10.1 The Classic Tessar 9x,+G['Zt
10.2 The Heliar/Pentac kJFHUR
10.3 The Portrait Lens and the Enlarger Lens !%9I%Ak^
10.4 Other Compounded Triplets pBLO
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar Gjr2]t;E
9B0"GEwrs
11 Double-Meniscus Anastigmats lNAHn<ht
11.1 Meniscus Components r U5'hK
11.2 The Hypergon, Totogon, and Metrogon }C}_
I:=C
11.3 A Two Element Aspheric Thick Meniscus Camera Lens %Ski5q
11.4 Protar, Dagor, and Convertible Lenses ZZ7U^#RT
11.5 The Split Dagor ![%,pip2/&
11.6 The Dogmar G> >_G<x
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens W -&5
v
l0)uu4|
12 The Biotar or Double-Gauss Lens HskN(Ho
12.1 The Basic Six-Element Version HbVLL`06*
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 7i/Cax
12.3 The Seven-Element Biotar - Split-Rear Singlet l[ k$O$jo
12.4 The Seven-Element Biotar - Broken Contact Front Doublet O2f2Fb$B7
12.5 The Seven-Element Biotar - One Compounded Outer Element {c;3$
12.6 The Eight-Element Biotar Ymom 0g+f
12.7 A “Doubled Double-Gauss” Relay 37Y]sJrs$
=ndKG5
13 Telephoto Lenses Hc9pWr"N
13.1 The Basic Telephoto ]9Hy
"#Fz
13.2 Close-up or Macro Lenses W[s>TDc`v
13.3 Telephoto Designs g (k|"g`*
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch /G ;yxdb
cK&oC$[r-
OFv} jT
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses p6'8l~W+
14.1 The Reverse Telephoto Principle AAcbY;
14.2 The Basic Retrofocus Lens HxaUVg0
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses _(foJRr
v!Z 9T
15 Wide Angle Lenses with Negative Outer Lenses #C^m>o~R
ig{5]wZ(
16 The Petzval Lens; Head-up Display Lenses C+5nft6:
16.1 The Petzval Portrait Lens bE~lc}%
16.2 The Petzval Projection Lens h;->i]
16.3 The Petzval with a Field Flattener 8n? .w:Y/
16.4 Very Height Speed Petzval Lenses cx}-tj"m-
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems F04Etf
2k
LNkyV*TI
17 Microscope Objectives ,e2va7}3
17.1 General Considerations CCV~nf
17.2 Classic Objective Design Forms; The Aplanatic Front }|,y`ui\
17.3 Flat-Field Objectives Hik[pVK@
17.4 Reflecting Objectives s9iM hCu|
17.5 The Microscope Objective Designs iq$/6!t
e^ yB9b
18 Mirror and Catadioptric Systems VzesqVx
18.1 The Good and Bad Points of Mirrors "dOzQz*E
18.2 The Classic Two-Mirror Systems n9fk{"y'G
18.3 Catadioptric Systems D3PF(Wx
18.4 Aspheric Correctors and Schmidt Systems )T?ryp3ev
18.5 Confocal Paraboloids /V&Y@j
18.6 Unobscured Systems }kpkHq"`f
18.7 Design of a Schmidt-Cassegrain “from Scratch” PW}.`
bb{+
19 Infrared and Ultraviolet Systems @_{"ho
19.1 Infrared Optics (yfTkBy
19.2 IR Objective Lenses :9}*p@
19.3 IR Telescope 7nmo p7
19.4 Laser Beam Expanders -g0>>{M'
19,5 Ultraviolet Systems !r<7]nwV
19.6 Microlithographic Lenses (Gcl,IW
s6B@:9
20 Zoom Lenses }MNm>3
20.1 Zoom Lenses *D,T}N
20.2 Zoom Lenses for Point and Shoot Cameras #_d%hr~d
20.3 A 20X Video Zoom Lens L6m'u6:1{
20.4 A Zoom Scanner Lens isjkfl-!
20.5 A Possible Zoom Lens Design Procedure uT1x\Rt|e
?@_dx=su
21 Projection TV Lenses and Macro Lenses X6)LpMm
21.1 Projection TV Lenses )7^jq|
21.2 Macro Lenses 6{M.S}.^
h>wU';5#f
22 Scanner/ , Laser Disk and Collimator Lenses $IHa]9 {
22.1 Monochromatic Systems :|a[6Uwl\V
22.2 Scanner Lenses ?U |lZ~o
22.3 Laser Disk, Focusing, and Collimator Lenses _PIk,!<
ZU`"^FQ3A
23 Tolerance Budgeting ;bX{7j
23.1 The Tolerance Budget =F9-,"EAI
23.2 Additive Tolerances { T.VB~C
23.3 Establishing the Tolerance Budget `JRdOe
WCH>9Z>cj
24 Formulary G.Q+"+*^
24.1 Sign Conventions, Symbols, and Definitions Sz
=z
TPnO
24.2 The Cardinal Points 7%hMf$KQ
24.3 Image Equations c&Dy{B!
24.4 Paraxial Ray Tracing (Surface by Surface) O%Mh
g\#B
24.5 Invariants <t8})
24.6 Paraxial Ray Tracing (Component by Component) rZLMYM
24.7 Two-Componenet Relationships .MKxHM7
24.8 Third-Order Aberrations – Surface Contributions Rh=h{O
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs C
RNO4
24.10 Stop Shift Equations w^~,M3(+)1
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces z8oSh t`+
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) {S?.bT%&
%lBFj/B
ek9%Xk8
Glossary '
{Q L`L
Reference 8g3 6-8
Index