"Modern Lens Design" 2nd Edition by Warren J. Smith x:-`o_Q*i
[b1hC ~I;
Contents of Modern Lens Design 2nd Edition OlGR<X
tgN92Q.i6T
1 Introduction xZ ;bMxZ
1.1 Lens Design Books ntH T
1.2 Reference Material H@W0gK(cS;
1.3 Specifications ^KH%mSX>
1.4 Lens Design 2%YXc|gGT
1.5 Lens Design Program Features &o.iUk
1.6 About This Book -Bv12ymLG
d]7*mzw^j
2 Automatic Lens Design el*9 Ih
2.2 The Merit Function FAtWsk*pgY
2.3 Local Minima jgRCs.6
2.4 The Landscape Lens 2Ow<`[7
2.5 Types of Merit Function I~RcOiL)
2.6 Stagnation }tR'Hz2
2.7 Generalized Simulated Annealing Wo3'd|Y~i
2.8 Considerations about Variables for Optimization d}% (jJ(I
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ptR
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits {3 o%d:
2.11 Spectral Weighting IwRQL%
2.12 How to Get Started <.$,`m,
4x]NUt
3 Improving a Design 6Ct0hk4
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ^pw7o6}
3.2 Glass Changes ( Index and V Values ) Q
X):T#^V
3.3 Splitting Elements gz\j('~-D
3.4 Separating a Cemented Doublet b%<jUY
3.5 Compounding an Element $jcz?vH
3.6 Vignetting and Its Uses M,G8*HI"
3.7 Eliminating a Weak Element; the Concentric Problem BhkAQEsWTQ
3.8 Balancing Aberrations gV`S%
3.9 The Symmetrical Principle n)CH^WHL&
3.10 Aspheric Surfaces ZbyG*5iq
E{oB2;P
4 Evaluation: How Good is This Design sL
mW\\kA>
4.1 The Uses of a Preliminary Evaluation -x?Hj/
4.2 OPD versus Measures of Performance 6vWii)O.D
4.3 Geometric Blur Spot Size versus Certain Aberrations .h6Y<
E
4.4 Interpreting MTF - The Modulation Transfer Function '\'7yN'
4.5 Fabrication Considerations kPedX
%IU4\ZY>
5 Lens Design Data `D"1
gD}{A
5.1 About the Sample Lens Designs ](n69XX_
5.2 Lens Prescriptions, Drawings, and Aberration Plots +7^w9G
5.3 Estimating the Potential of a Redesign 0#]!#1utg
5.4 Scaling a Desing, Its Aberrations, and Its MTF cf&C|U
5.5 Notes on the Interpretation of Ray Intercept Plots N.vG]%1"
5.6 Various Evaluation Plot e
sGlMq
i8eA_Q
6 Telescope Objective ++gPv}:$X
6.1 The Thin Airspaced Doublet ~=Fk/
6.2 Merit Function for a Telescope Objective 7_7xL(F/
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 4V>vg2
d
6.4 Spherochromatism ^T+<!k
6.5 Zonal Spherical Aberration 0@w&J9yG
6.6 Induced Aberrations vhX-Qk t}
6.7 Three-Element Objectives \`&xprqAw
6.8 Secondary Spectrum (Apochromatic Systems) d}pGeU'
6.9 The Design of an f/7 Apochromatic Triplet *.,8,e8Vq
6.10 The Diffractive Surface in Lens Design IY~
{)X
6.11 A Final Note aYR\ <02
hsz$S:am
7 Eyepieces and Magnifiers V"BVvSNu
7.1 Eyepieces v$Dh.y
7.2 A Pair of Magnifier Designs o KlF5I
7.3 The Simple, Classical Eyepieces pBvo M={2!
7.4 Design Story of an Eyepiece for a 6*30 Binocular g\qX7nIH?
7.5 Four-Element Eyepieces qjzZ}
7.6 Five-Element Eyepieces R rxRa[{Z
7.7 Very High Index Eyepiece/Magnifier &!4(
0u
7.8 Six- and Seven-Element Eyepieces <G&WYk%u*
XCV0.u|
8 Cooke Triplet Anastigmats L#[HnsLp_
8.1 Airspaced Triplet Anastigmats 65uZLsQ
8.2 Glass Choice 01-p
`H+
8.3 Vertex Length and Residual Aberrations )'w]YIv9
8.4 Other Design Considerations @H3|u`6V
8.5 A Plastic, Aspheric Triplet Camera Lens 2,+@#q
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet .5Q5\qc=
8.7 Possible Improvement to Our “Basic” Triplet 7/4~>D&-b
8.7 The Rear Earth (Lanthanum) Glasses %odw+PhO
8.9 Aspherizing the Surfaces e1oFnu2R
8.10 Increasing the Element Thickness _pJX1_vD
W;5N04ko
9 Split Triplets Bk@bN~B4
rknzo]N,
10 The Tessar, Heliar, and Other Compounded Triplets N4'
.a=1
10.1 The Classic Tessar h!Z Z2[
10.2 The Heliar/Pentac 7jhl0
10.3 The Portrait Lens and the Enlarger Lens F=:F>6`
10.4 Other Compounded Triplets gq=0L:
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar So0`c,D
pVdhj^n
11 Double-Meniscus Anastigmats fQ^h{n
11.1 Meniscus Components Ua}g
11.2 The Hypergon, Totogon, and Metrogon -=@K%\\~5
11.3 A Two Element Aspheric Thick Meniscus Camera Lens "sC$%D<oc
11.4 Protar, Dagor, and Convertible Lenses _P>1`IR
11.5 The Split Dagor >3v0yh_3
11.6 The Dogmar OX'/?B((
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens k&n\
=tKN
o-~-F+mj#
12 The Biotar or Double-Gauss Lens
GE{8I<7c
12.1 The Basic Six-Element Version >:="?'N5l!
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens (M4]#5
12.3 The Seven-Element Biotar - Split-Rear Singlet .0rJIO
12.4 The Seven-Element Biotar - Broken Contact Front Doublet R9S7_u
12.5 The Seven-Element Biotar - One Compounded Outer Element 9t,aT!f
12.6 The Eight-Element Biotar Vx0MG{vG1
12.7 A “Doubled Double-Gauss” Relay ?U7&R%Lh`
}Ox2olUX
13 Telephoto Lenses ,oy4V ^B&
13.1 The Basic Telephoto L2:oZ&:u`J
13.2 Close-up or Macro Lenses aMe%#cLI
13.3 Telephoto Designs *C,$W\6sz
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ZS07_6.~
eW<!^Aer
#MmmwPB_
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses ,:\zXESy4
14.1 The Reverse Telephoto Principle ":5~L9&G
14.2 The Basic Retrofocus Lens &e5^v
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses K*hf(w9="%
H{p[Ghp
15 Wide Angle Lenses with Negative Outer Lenses vLVSZX
p]atH<^;K
16 The Petzval Lens; Head-up Display Lenses s2,`eV
16.1 The Petzval Portrait Lens #l8K8GLuf
16.2 The Petzval Projection Lens i[V,IP +
16.3 The Petzval with a Field Flattener lk5_s@V
l
16.4 Very Height Speed Petzval Lenses 0~LnnDN
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 'eTpcrS3
iX&Z
17 Microscope Objectives wFH(.E0@Q
17.1 General Considerations ~8S4Kj)%
17.2 Classic Objective Design Forms; The Aplanatic Front PDa06(t7
17.3 Flat-Field Objectives _A# x&<c
17.4 Reflecting Objectives r)*_,Fo|
17.5 The Microscope Objective Designs qX}dbuDE"P
{RWahnr{
18 Mirror and Catadioptric Systems (5CX *)R
18.1 The Good and Bad Points of Mirrors yDl5t-0`
18.2 The Classic Two-Mirror Systems 3M5=@Fwkr
18.3 Catadioptric Systems y2d_b/
18.4 Aspheric Correctors and Schmidt Systems vCrWA-q#
18.5 Confocal Paraboloids QQ2OZy>W
18.6 Unobscured Systems 6Wcn(h8%*
18.7 Design of a Schmidt-Cassegrain “from Scratch” o
F,R@f
"@):*3
4
19 Infrared and Ultraviolet Systems I=Lj_UF4
19.1 Infrared Optics )xXrs^
19.2 IR Objective Lenses G+%5V5GS
19.3 IR Telescope jw&}N6^G
19.4 Laser Beam Expanders }sm56}_
19,5 Ultraviolet Systems et7 T)(k0
19.6 Microlithographic Lenses
A*?/F:E
&vGEz*F
20 Zoom Lenses KH CdO
20.1 Zoom Lenses vFkyfX(
20.2 Zoom Lenses for Point and Shoot Cameras %QlBFl0a
20.3 A 20X Video Zoom Lens |R|U z`
20.4 A Zoom Scanner Lens omDi<-
20.5 A Possible Zoom Lens Design Procedure ^~hhdwu3a
\1c`)
21 Projection TV Lenses and Macro Lenses i(TDJ@}
21.1 Projection TV Lenses A1&>L9nUx
21.2 Macro Lenses 1+y6W1m^R
)l81R
22 Scanner/ , Laser Disk and Collimator Lenses b&_u
O
22.1 Monochromatic Systems )QJU]G
22.2 Scanner Lenses "!4>gg3r
22.3 Laser Disk, Focusing, and Collimator Lenses T3PaG\5B
e&VR>VJEA
23 Tolerance Budgeting _s#/f5<:B
23.1 The Tolerance Budget `qy6qKl
N
23.2 Additive Tolerances _S7M5{U_
23.3 Establishing the Tolerance Budget M,dzf
\$0
x8B
24 Formulary Z~.]ZWj-
24.1 Sign Conventions, Symbols, and Definitions QK/+*hr;
24.2 The Cardinal Points %v6]>FNP'3
24.3 Image Equations WSX@0A.&)
24.4 Paraxial Ray Tracing (Surface by Surface) g{f>jd
24.5 Invariants Hi 0df3t
24.6 Paraxial Ray Tracing (Component by Component) ^_"q`71Dk
24.7 Two-Componenet Relationships F(kRAe;
24.8 Third-Order Aberrations – Surface Contributions kJ5?BdvM&
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs lr= !:D=K
24.10 Stop Shift Equations 3[g++B."pC
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces uvc{RP
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) dJ"xW;"
!B38!
L
-X[8 soz
Glossary pkMON}"mj
Reference nfPl#]ef*
Index