"Modern Lens Design" 2nd Edition by Warren J. Smith 6.'j\
}Sr=|j
Contents of Modern Lens Design 2nd Edition ak"W/"2:
dI?x(vw
1 Introduction \n<9R8g5
1.1 Lens Design Books WdZ_^
1.2 Reference Material 9-"!v0['
1.3 Specifications :lBw0{fP
1.4 Lens Design oiTSpd-
1.5 Lens Design Program Features BA6(Owb
1.6 About This Book |r+w(TG
WS6;ad;|
2 Automatic Lens Design (&!RX.i
2.2 The Merit Function Kn*LwWne
2.3 Local Minima &Sdf0"
2.4 The Landscape Lens <]f{X<ef
2.5 Types of Merit Function jY k5]2#A
2.6 Stagnation <
UD90}
2.7 Generalized Simulated Annealing ~$jRn(2
2.8 Considerations about Variables for Optimization GCj[ySCD
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems \#!B*:u
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits mfx-Ja_a
2.11 Spectral Weighting TXS{=
2.12 How to Get Started PS3jCT
Vj[hT~{f
3 Improving a Design KsSIX
3.1 Lens Design Tip Sheet: Standard Improvement Techniques bk|?>yd
3.2 Glass Changes ( Index and V Values ) L]*5cH
3.3 Splitting Elements QmC#1%@a
3.4 Separating a Cemented Doublet nIWY<Z"
3.5 Compounding an Element 8bdx$,$k
3.6 Vignetting and Its Uses KP)t,\@f!
3.7 Eliminating a Weak Element; the Concentric Problem `4-N@h
3.8 Balancing Aberrations `b KJ
3.9 The Symmetrical Principle <<PXh&wu0
3.10 Aspheric Surfaces i<{:J -U|
#Q"04'g
4 Evaluation: How Good is This Design Zd}12HFq
4.1 The Uses of a Preliminary Evaluation NXMZTZpB7
4.2 OPD versus Measures of Performance u&Yd+');
4.3 Geometric Blur Spot Size versus Certain Aberrations .#}A/V.-Y
4.4 Interpreting MTF - The Modulation Transfer Function '<U4D
4.5 Fabrication Considerations ! NJGW
*G8Z[ht%r
5 Lens Design Data &S39SV
5.1 About the Sample Lens Designs /5X_gjOL,
5.2 Lens Prescriptions, Drawings, and Aberration Plots ~t<uX "K
5.3 Estimating the Potential of a Redesign VA@
5.4 Scaling a Desing, Its Aberrations, and Its MTF Vy6~O|68=
5.5 Notes on the Interpretation of Ray Intercept Plots sD$K<nyz
5.6 Various Evaluation Plot x^Zm:Jrw~
D67z6jep(
6 Telescope Objective L;=3n[^x
6.1 The Thin Airspaced Doublet ?-'GbOr!
6.2 Merit Function for a Telescope Objective )4RSo&9p`
6.3 The Design of an f/7 Cemented Doublet Telescope Objective '=(D7F;
6.4 Spherochromatism aF[#(PF
6.5 Zonal Spherical Aberration j8+>E?nm
6.6 Induced Aberrations q2U?EP{8~
6.7 Three-Element Objectives LRR)T: e}q
6.8 Secondary Spectrum (Apochromatic Systems) kZ= 2#.
6.9 The Design of an f/7 Apochromatic Triplet iD<}r?Z
6.10 The Diffractive Surface in Lens Design WidLUv
6.11 A Final Note MaLH2?je^n
X/Ii}X/p
7 Eyepieces and Magnifiers M eYu
7.1 Eyepieces n72kJ3u.
7.2 A Pair of Magnifier Designs 5cb8=W-
7.3 The Simple, Classical Eyepieces Z>~7|vl
7.4 Design Story of an Eyepiece for a 6*30 Binocular Mp(;PbVD
7.5 Four-Element Eyepieces m95]
z18T'
7.6 Five-Element Eyepieces r::0\{{r"p
7.7 Very High Index Eyepiece/Magnifier ,u9>c*Ss\
7.8 Six- and Seven-Element Eyepieces &[
,*
n(.L=VuXn
8 Cooke Triplet Anastigmats `O!yt
8.1 Airspaced Triplet Anastigmats `Ue5;<K-/
8.2 Glass Choice g>g*1oS
8.3 Vertex Length and Residual Aberrations 2Z ?l,M~
8.4 Other Design Considerations o wwWm1@
8.5 A Plastic, Aspheric Triplet Camera Lens %~M#3Ywa
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 'wWuR@e#&
8.7 Possible Improvement to Our “Basic” Triplet [
~kS)
8.7 The Rear Earth (Lanthanum) Glasses Y?-Ef
sK
8.9 Aspherizing the Surfaces u4'B
8.10 Increasing the Element Thickness 53?Ati\Y)
fu?u~QZ8
9 Split Triplets }*b\=AS=
P0RtS1A
10 The Tessar, Heliar, and Other Compounded Triplets RY1-Zjlb<
10.1 The Classic Tessar _w2KUvG-8
10.2 The Heliar/Pentac !3{.
V\P)
10.3 The Portrait Lens and the Enlarger Lens 24sQon
10.4 Other Compounded Triplets Kw2]J)TO
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar .HRd6O;
B5+$VQ
11 Double-Meniscus Anastigmats >qUD_U3A
11.1 Meniscus Components kh8 M=
11.2 The Hypergon, Totogon, and Metrogon Gyrc~m[$
11.3 A Two Element Aspheric Thick Meniscus Camera Lens MHGaf`7ro
11.4 Protar, Dagor, and Convertible Lenses SwaMpNXL
11.5 The Split Dagor ;,7m
11.6 The Dogmar Lhrlz,1
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens shO4>Ha
Cq3Au%7
12 The Biotar or Double-Gauss Lens 1~j,A[&|<
12.1 The Basic Six-Element Version @jq H8
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens MZqHL4<|
12.3 The Seven-Element Biotar - Split-Rear Singlet tgHN\@yj
12.4 The Seven-Element Biotar - Broken Contact Front Doublet 5DO}&%.xt
12.5 The Seven-Element Biotar - One Compounded Outer Element T!Lv%i*|Y
12.6 The Eight-Element Biotar :&LV^A
12.7 A “Doubled Double-Gauss” Relay eu?P6>urA
rv<qze;?|
13 Telephoto Lenses =h|7bYLy
13.1 The Basic Telephoto t3C#$>
13.2 Close-up or Macro Lenses ,Ek6X)|@
13.3 Telephoto Designs 1lJ^$U
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ;F"Tu
.4[M-@4+]
?}S!8;d
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses T'9M
14.1 The Reverse Telephoto Principle "{3MXAFe
14.2 The Basic Retrofocus Lens NRk^Z)
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 88 ca
+;Gvp=hk
15 Wide Angle Lenses with Negative Outer Lenses /Xv@g$
Q5u3~Q'e
16 The Petzval Lens; Head-up Display Lenses >5zD0!bA
16.1 The Petzval Portrait Lens =vDpm,
16.2 The Petzval Projection Lens &)|f|\yh"
16.3 The Petzval with a Field Flattener YG)7+94
16.4 Very Height Speed Petzval Lenses W)Y:2P<.
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems '#~Sb8
V8b^{}nxt
17 Microscope Objectives 1F+nWc2 b
17.1 General Considerations #qJ6iA6{
17.2 Classic Objective Design Forms; The Aplanatic Front }uO2x@
17.3 Flat-Field Objectives pW>.3pj
17.4 Reflecting Objectives dEo r+5}
17.5 The Microscope Objective Designs ZmI#-[/
,4}s 1J#
18 Mirror and Catadioptric Systems +eop4 |Z
18.1 The Good and Bad Points of Mirrors \lyHQ-gWhc
18.2 The Classic Two-Mirror Systems <l>L8{-3
18.3 Catadioptric Systems ?ZkVk =t?
18.4 Aspheric Correctors and Schmidt Systems w;J#+ik
18.5 Confocal Paraboloids a)6?:nY$
18.6 Unobscured Systems %6Y}0>gY
18.7 Design of a Schmidt-Cassegrain “from Scratch” A-eCc#I
O<XNI(@
19 Infrared and Ultraviolet Systems M?kXzb\O
19.1 Infrared Optics @v.?z2h
19.2 IR Objective Lenses -Byl~n3*D
19.3 IR Telescope MW=rX>tE
19.4 Laser Beam Expanders maV*+!\
19,5 Ultraviolet Systems -cUw}
19.6 Microlithographic Lenses '[bw7T
5 L-6@@/
20 Zoom Lenses y@Td]6|f
20.1 Zoom Lenses [kPl7[OL
20.2 Zoom Lenses for Point and Shoot Cameras w2K>k/v{-
20.3 A 20X Video Zoom Lens '%a:L^a?
20.4 A Zoom Scanner Lens 1z@ ncqe
20.5 A Possible Zoom Lens Design Procedure 59?$9}ob
Yof]
21 Projection TV Lenses and Macro Lenses P{,=a]x,mz
21.1 Projection TV Lenses ntZHO}'
21.2 Macro Lenses gpCWXz')i
`|:` yl
22 Scanner/ , Laser Disk and Collimator Lenses q-e3;$
22.1 Monochromatic Systems cQ0+kX<
22.2 Scanner Lenses K=dG-+B~}
22.3 Laser Disk, Focusing, and Collimator Lenses 7}tXF
ZZ>(o
d!B
23 Tolerance Budgeting 1NK,:m
23.1 The Tolerance Budget
]_4HtcL4
23.2 Additive Tolerances +V#dJ[,8;.
23.3 Establishing the Tolerance Budget |s!n7%|,7
5[^Rf'wy
24 Formulary xJFxrG'c
24.1 Sign Conventions, Symbols, and Definitions CR-2>,*a9
24.2 The Cardinal Points }jg,[jw_"X
24.3 Image Equations Qaiqx"x3
24.4 Paraxial Ray Tracing (Surface by Surface) /)r[}C0
24.5 Invariants 5J3K3
24.6 Paraxial Ray Tracing (Component by Component) x0xQFlGk
24.7 Two-Componenet Relationships mEV@~){
24.8 Third-Order Aberrations – Surface Contributions WX$AOnEv
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs rP}0B/
24.10 Stop Shift Equations U^OR\=G^
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces jf&
oN]sZ
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) P_M!h~
) =|8%IrB
@%6"xnb`
Glossary |1/?>=dDm
Reference O{=@c96rl
Index