"Modern Lens Design" 2nd Edition by Warren J. Smith |$e:*
Rp/-Pv
Contents of Modern Lens Design 2nd Edition !O{z 3W
xl2g0?
1 Introduction V@Wcb$mgk
1.1 Lens Design Books uTGcQs}
1.2 Reference Material =i6:puf
1.3 Specifications hhmGv9P
1.4 Lens Design ><Uk*mwL
1.5 Lens Design Program Features C3S`}o.
1.6 About This Book 7lU.Nit
yr{B5z,
2 Automatic Lens Design uRQ_'l
2.2 The Merit Function V`k8j-*s
2.3 Local Minima %-j&e44
2.4 The Landscape Lens B*,?C]0{
2.5 Types of Merit Function sX:lE^)-z
2.6 Stagnation 3k'.(P|F
2.7 Generalized Simulated Annealing o~C('1Fdb
2.8 Considerations about Variables for Optimization -_~)f{KN@
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems <y>:B}9'
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Jps .;yjk
2.11 Spectral Weighting 9;KJr[FQV
2.12 How to Get Started *^h_z;{,
$(q8y/,R*-
3 Improving a Design Fu)Th|5GZ
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 7co`Zw4}g
3.2 Glass Changes ( Index and V Values ) Z$;"8XUM
3.3 Splitting Elements Z2p> n`D
3.4 Separating a Cemented Doublet U:lv^QPG
3.5 Compounding an Element X~RH^VYv
3.6 Vignetting and Its Uses )saR0{e0N
3.7 Eliminating a Weak Element; the Concentric Problem 9*}gl3y
3.8 Balancing Aberrations 6/2v
3.9 The Symmetrical Principle kh?. K#
3.10 Aspheric Surfaces 8/Rm!.8+~
59!)j>f
4 Evaluation: How Good is This Design 1D{#rA.X
4.1 The Uses of a Preliminary Evaluation s AE9<(g&@
4.2 OPD versus Measures of Performance kRot7-7I|
4.3 Geometric Blur Spot Size versus Certain Aberrations <qY5SV,
4.4 Interpreting MTF - The Modulation Transfer Function *fhX*e8y
4.5 Fabrication Considerations _ #'9kx|)
=nhzMU9c\y
5 Lens Design Data Tsz
NlRxc
5.1 About the Sample Lens Designs Hed$ytMaGz
5.2 Lens Prescriptions, Drawings, and Aberration Plots K{L.ZH>7
5.3 Estimating the Potential of a Redesign ?q Xs-
5.4 Scaling a Desing, Its Aberrations, and Its MTF <abKiXA"
5.5 Notes on the Interpretation of Ray Intercept Plots 0IzZKRw
5.6 Various Evaluation Plot Y'N'hRD
Z"tQpJg
6 Telescope Objective S< x:t(
6.1 The Thin Airspaced Doublet #s+Q{2s
6.2 Merit Function for a Telescope Objective 3k{ @.V?]
6.3 The Design of an f/7 Cemented Doublet Telescope Objective rYGRz#:~+
6.4 Spherochromatism ~`Sle
xK|}
6.5 Zonal Spherical Aberration ']?=[`#NL
6.6 Induced Aberrations n\ Uh
6.7 Three-Element Objectives SE!L :
6.8 Secondary Spectrum (Apochromatic Systems) KXe
ka
6.9 The Design of an f/7 Apochromatic Triplet }1>atgq]w
6.10 The Diffractive Surface in Lens Design X47O l
6.11 A Final Note ~zyQ('
|s|/]aD}o
7 Eyepieces and Magnifiers !6E:5=L^
7.1 Eyepieces {!=2<-Aq
7.2 A Pair of Magnifier Designs oT->^4WY
7.3 The Simple, Classical Eyepieces 8]C1K
Zs
7.4 Design Story of an Eyepiece for a 6*30 Binocular xOIg|2^8
7.5 Four-Element Eyepieces p&5S|![\
7.6 Five-Element Eyepieces d_T<5Hin
7.7 Very High Index Eyepiece/Magnifier ) `I=oB
7.8 Six- and Seven-Element Eyepieces q6&67u0
QUp?i
8 Cooke Triplet Anastigmats o+^Eu}[.
8.1 Airspaced Triplet Anastigmats 1S*P"8N}0h
8.2 Glass Choice \7
Mq $d
8.3 Vertex Length and Residual Aberrations Wp4K6x
8.4 Other Design Considerations rIlBH*aT
8.5 A Plastic, Aspheric Triplet Camera Lens [q$e6JwAt
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet (nz}J)T&
8.7 Possible Improvement to Our “Basic” Triplet KZ3B~#oQ
8.7 The Rear Earth (Lanthanum) Glasses /e<5Np\X
8.9 Aspherizing the Surfaces P;c0L;/
8.10 Increasing the Element Thickness {F!v+W>
gvo?([j-m
9 Split Triplets e
Y DUon
M[z3 f
10 The Tessar, Heliar, and Other Compounded Triplets l0#4Fma
10.1 The Classic Tessar >[P%Ty);
10.2 The Heliar/Pentac l
$w/Fz
10.3 The Portrait Lens and the Enlarger Lens Gl;f#}
10.4 Other Compounded Triplets d<v~=
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ]b)!YPo
:iEA UM
11 Double-Meniscus Anastigmats J% AG`
11.1 Meniscus Components :ln/`_
11.2 The Hypergon, Totogon, and Metrogon yDuq6`R*
11.3 A Two Element Aspheric Thick Meniscus Camera Lens m2ox8(sd
11.4 Protar, Dagor, and Convertible Lenses g@(4ujOT
11.5 The Split Dagor _G[6+g5|
11.6 The Dogmar FH[#yq.Pr
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens j"0rkN3$J
kw#X]`c3
12 The Biotar or Double-Gauss Lens ~.H~XKw
12.1 The Basic Six-Element Version vgN@~Xa
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens jf 8w7T
12.3 The Seven-Element Biotar - Split-Rear Singlet aC}p^Nkr"k
12.4 The Seven-Element Biotar - Broken Contact Front Doublet
\eT/ %$
12.5 The Seven-Element Biotar - One Compounded Outer Element S<9gyW
12.6 The Eight-Element Biotar tStJ2-5*t
12.7 A “Doubled Double-Gauss” Relay I[%M!_+
YLE/w @*
13 Telephoto Lenses ;8uHRcdQ
13.1 The Basic Telephoto ] .`_,
IO
13.2 Close-up or Macro Lenses y%FYXwR{
13.3 Telephoto Designs 0yKhp:^
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch 1j+eD:d'
>I|<^$/
yj'Cy8
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 0+rW;-_(
14.1 The Reverse Telephoto Principle /K[]B]1NE
14.2 The Basic Retrofocus Lens d0TgqO{
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ig+k[`W
$Q=$?>4U
15 Wide Angle Lenses with Negative Outer Lenses F~%|3a$Y
UYH|?Jw!N
16 The Petzval Lens; Head-up Display Lenses y>4p~
16.1 The Petzval Portrait Lens 'r6 cVBb}
16.2 The Petzval Projection Lens {({
R: !c
16.3 The Petzval with a Field Flattener V@Ax}<$A
16.4 Very Height Speed Petzval Lenses OW?uZ<z
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems Cy]"
&:-GI)[o
17 Microscope Objectives xNn>+J
17.1 General Considerations 5[1@`6j
17.2 Classic Objective Design Forms; The Aplanatic Front XadG\_?t`
17.3 Flat-Field Objectives BEFe~* ~
17.4 Reflecting Objectives ]Qh[%GD
17.5 The Microscope Objective Designs fi5YMYd1
c]S+70!n
18 Mirror and Catadioptric Systems bN]\K/
18.1 The Good and Bad Points of Mirrors llHN2R%(
18.2 The Classic Two-Mirror Systems ,"x23=]
18.3 Catadioptric Systems v`@5enr
18.4 Aspheric Correctors and Schmidt Systems <Sz>ZIISd
18.5 Confocal Paraboloids zw}@nqp
18.6 Unobscured Systems bX a %EMF
18.7 Design of a Schmidt-Cassegrain “from Scratch” B?$S~5
}
wgC??Be;ut
19 Infrared and Ultraviolet Systems cdd P
T
19.1 Infrared Optics j0ci~6&b3_
19.2 IR Objective Lenses xgZV0!%
19.3 IR Telescope
JsZAP
19.4 Laser Beam Expanders n$XMsl.>
19,5 Ultraviolet Systems !l sy&6
19.6 Microlithographic Lenses 67Af} >Q
SSl8
20 Zoom Lenses h;cB_6vt
20.1 Zoom Lenses Z"teZ0H
20.2 Zoom Lenses for Point and Shoot Cameras =; ~%L
20.3 A 20X Video Zoom Lens (mD-FR@#
20.4 A Zoom Scanner Lens DDqC}l_
20.5 A Possible Zoom Lens Design Procedure 9}K(Q=
+G3nn!gl4
21 Projection TV Lenses and Macro Lenses .y/NudD
21.1 Projection TV Lenses B|Rpm^|
21.2 Macro Lenses 23B^g
(%ri#r
22 Scanner/ , Laser Disk and Collimator Lenses >oM9~7f
22.1 Monochromatic Systems lOowMlf@2
22.2 Scanner Lenses 1 $KLMW
22.3 Laser Disk, Focusing, and Collimator Lenses mVc'%cPaw
s+y'<88
23 Tolerance Budgeting D7gX,e
23.1 The Tolerance Budget 3isXgp8
23.2 Additive Tolerances 4 _c:Vl
23.3 Establishing the Tolerance Budget WwCK K
aPY>fy^8D
24 Formulary Y*5@|Q
24.1 Sign Conventions, Symbols, and Definitions &<fRej]v
24.2 The Cardinal Points MQbNWUi
24.3 Image Equations a@S4IoBg%
24.4 Paraxial Ray Tracing (Surface by Surface) V{AH\IV-
24.5 Invariants j]ln
:?\
24.6 Paraxial Ray Tracing (Component by Component) *$4A|EA V
24.7 Two-Componenet Relationships VFO&)E/-
24.8 Third-Order Aberrations – Surface Contributions ZB_16&2Ow
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs cc2 oFn
24.10 Stop Shift Equations {g:/BFLr#
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces !mErt2UJl
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) &)"7am(S`
@dT: 1s
kj<D 4)
Glossary eN2k8=
Reference 2XecP'+m
Index