"Modern Lens Design" 2nd Edition by Warren J. Smith VGkW3Nt0
hCSRsk3
Contents of Modern Lens Design 2nd Edition eYnLZ&H5O
4Xa.r6T_N=
1 Introduction 1gf/#+$\
1.1 Lens Design Books mkKRC;
1.2 Reference Material kG_&-b
1.3 Specifications ./aZV
1.4 Lens Design dw=Xjyk?h
1.5 Lens Design Program Features @$K![]oD
1.6 About This Book Oi+Qy[y2
c"oQ/x
2 Automatic Lens Design nvm1.}=Cnd
2.2 The Merit Function ~2;&pZ$
2.3 Local Minima ROlzs}
2.4 The Landscape Lens LRfFn^FPM
2.5 Types of Merit Function q[Sp|C6x
2.6 Stagnation PaU@T! v
2.7 Generalized Simulated Annealing s/k
2.8 Considerations about Variables for Optimization )w3XN A_V
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems XPR:_
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits +c~O0U1
2.11 Spectral Weighting 1+.y,}F6b
2.12 How to Get Started {VrAh*#h
n?7hp%}
3 Improving a Design 6c;?`C
3.1 Lens Design Tip Sheet: Standard Improvement Techniques }lrfO_
3.2 Glass Changes ( Index and V Values ) *NX*/(Q
3.3 Splitting Elements )%nt61P\W
3.4 Separating a Cemented Doublet y.TdWnXx
3.5 Compounding an Element D8<0zxc=(
3.6 Vignetting and Its Uses /3"e3{uy
3.7 Eliminating a Weak Element; the Concentric Problem Xs#?~~"aC
3.8 Balancing Aberrations ^$Me#ls!
3.9 The Symmetrical Principle PgGrk5;
3.10 Aspheric Surfaces )BM WC
k
?U2g8D nFY
4 Evaluation: How Good is This Design >cU*D:
4.1 The Uses of a Preliminary Evaluation UJyiRP:#]>
4.2 OPD versus Measures of Performance A~%g"
4.3 Geometric Blur Spot Size versus Certain Aberrations "O"^\f
4.4 Interpreting MTF - The Modulation Transfer Function ;Wp`th!F
4.5 Fabrication Considerations }I'>r(K
qH}62DP3
5 Lens Design Data r4z}yt+
5.1 About the Sample Lens Designs ix_$Ok
5.2 Lens Prescriptions, Drawings, and Aberration Plots #L)4|
5.3 Estimating the Potential of a Redesign E<fwl1<88
5.4 Scaling a Desing, Its Aberrations, and Its MTF _4x[}e7KF
5.5 Notes on the Interpretation of Ray Intercept Plots 1v8:,!C
5.6 Various Evaluation Plot c] :J/'vc
VG*=)8{
6 Telescope Objective PPIG?fK)
6.1 The Thin Airspaced Doublet SE7 (+r
6.2 Merit Function for a Telescope Objective ]#Z$jq{,
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ZLFdnC@
6.4 Spherochromatism C[/Uy
6.5 Zonal Spherical Aberration /:c,v-
6.6 Induced Aberrations 1.cUolnr
6.7 Three-Element Objectives tMs|UC
6.8 Secondary Spectrum (Apochromatic Systems) SieV%T0t1
6.9 The Design of an f/7 Apochromatic Triplet w7]p9B
6.10 The Diffractive Surface in Lens Design k)4lX|}Vm
6.11 A Final Note 4UX]S\X
pZ|nn
7 Eyepieces and Magnifiers 2l}FgD
7.1 Eyepieces tg%WVy2
7.2 A Pair of Magnifier Designs crOtQ
7.3 The Simple, Classical Eyepieces ^9m]KEucd7
7.4 Design Story of an Eyepiece for a 6*30 Binocular +cplM5X
7.5 Four-Element Eyepieces U Y?]\4Om
7.6 Five-Element Eyepieces H2tpP~!G
7.7 Very High Index Eyepiece/Magnifier ]t!}D6p
7.8 Six- and Seven-Element Eyepieces ?PU(<A+
H9a3rA>
8 Cooke Triplet Anastigmats nm%4L
8.1 Airspaced Triplet Anastigmats uEi.nSp)S
8.2 Glass Choice 8~L.6c5U
8.3 Vertex Length and Residual Aberrations g he=mQ-
8.4 Other Design Considerations "8Wc\YDh
8.5 A Plastic, Aspheric Triplet Camera Lens = ,E(!Sp
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet sN an"
8.7 Possible Improvement to Our “Basic” Triplet H_nOE(i<z
8.7 The Rear Earth (Lanthanum) Glasses w<^2h}5
8.9 Aspherizing the Surfaces DB?PS^-2
8.10 Increasing the Element Thickness Nv$gKC6 ,G
YdL1(|EdM
9 Split Triplets ;>x1)|n5
+sq,!6#G
10 The Tessar, Heliar, and Other Compounded Triplets fw~%^*
10.1 The Classic Tessar {
'mY>s7
10.2 The Heliar/Pentac rgY?X$1q_
10.3 The Portrait Lens and the Enlarger Lens ,Z\,IRn
10.4 Other Compounded Triplets 'MM~~:
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar UC2OYZb
sT T455h)
11 Double-Meniscus Anastigmats n[p9$W`
11.1 Meniscus Components T!eh?^E
11.2 The Hypergon, Totogon, and Metrogon 0$dNrq
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ^xu)~:} i
11.4 Protar, Dagor, and Convertible Lenses dCJR,},\f
11.5 The Split Dagor w5JC 2
11.6 The Dogmar Qmh(+-Mp(
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens vWfef~}~
xg%]\#
12 The Biotar or Double-Gauss Lens YyBq+6nq5
12.1 The Basic Six-Element Version E$zq8-p|
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens */h9 "B
12.3 The Seven-Element Biotar - Split-Rear Singlet )RKhEm%Vr2
12.4 The Seven-Element Biotar - Broken Contact Front Doublet J+*Y)k
12.5 The Seven-Element Biotar - One Compounded Outer Element f$*9J
12.6 The Eight-Element Biotar k |aOUW
12.7 A “Doubled Double-Gauss” Relay 4!RI2?4V
,OFr]74\
13 Telephoto Lenses 6L% R@r
13.1 The Basic Telephoto UDq KF85H
13.2 Close-up or Macro Lenses 1+ARV&bc
13.3 Telephoto Designs )C0X]?
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch p:n^c5
\$Qm2XKrK
03jBN2[!
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses XA^:n+Yo
14.1 The Reverse Telephoto Principle }K]VlFR
14.2 The Basic Retrofocus Lens 'cc4Y~0s
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Tk=3"y+u[
+s 0Bt '
15 Wide Angle Lenses with Negative Outer Lenses <(lSNGv5N
u5B/Em7,0
16 The Petzval Lens; Head-up Display Lenses `r bqYU0
16.1 The Petzval Portrait Lens >~8Df61o`
16.2 The Petzval Projection Lens y:Ab5/bHy
16.3 The Petzval with a Field Flattener vF\zZ<R/
16.4 Very Height Speed Petzval Lenses j`pR;XL1[
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems %QZ!Tb
1VsEic
17 Microscope Objectives H ?:#Ui(p
17.1 General Considerations )Ea_:C'
17.2 Classic Objective Design Forms; The Aplanatic Front \} Szb2
17.3 Flat-Field Objectives b-/x
17.4 Reflecting Objectives =_:L
wmI
17.5 The Microscope Objective Designs C)kQi2T
8-l Y6M\R\
18 Mirror and Catadioptric Systems FDC{8e
18.1 The Good and Bad Points of Mirrors -k{R<L
18.2 The Classic Two-Mirror Systems 6KTY`'I
18.3 Catadioptric Systems 6)YNjh.{*
18.4 Aspheric Correctors and Schmidt Systems =5eDT~=2{U
18.5 Confocal Paraboloids .T
X& X
18.6 Unobscured Systems 4V3
w$:,
18.7 Design of a Schmidt-Cassegrain “from Scratch” 6-YR'ikU
zQ_[wM-
19 Infrared and Ultraviolet Systems \+A<s,x
19.1 Infrared Optics 9\0 K%LL
19.2 IR Objective Lenses &fj?hYAj
19.3 IR Telescope *0zH5c
19.4 Laser Beam Expanders e)(|
19,5 Ultraviolet Systems D/`E!6Fk=
19.6 Microlithographic Lenses '$^ F.2
:*nBo
20 Zoom Lenses H)+kN'J
20.1 Zoom Lenses )5OU!c
20.2 Zoom Lenses for Point and Shoot Cameras I]$d,N!.
20.3 A 20X Video Zoom Lens 3?(p;
20.4 A Zoom Scanner Lens ?{IvA:
20.5 A Possible Zoom Lens Design Procedure MF(~!SOIG
wpI4P:
21 Projection TV Lenses and Macro Lenses Q~{@3<yEI
21.1 Projection TV Lenses ,~iAoxD5jY
21.2 Macro Lenses 0GVok$r@
L,/i%-J3c
22 Scanner/ , Laser Disk and Collimator Lenses %%[TM(z
22.1 Monochromatic Systems ]~ M
-KT
22.2 Scanner Lenses dfcG'+RU}
22.3 Laser Disk, Focusing, and Collimator Lenses :wAB"TCt0
ufPQ~,.
23 Tolerance Budgeting 4Pdk?vHK;
23.1 The Tolerance Budget [{*#cr f
23.2 Additive Tolerances F#wa)XH
23.3 Establishing the Tolerance Budget /GaR&
U:e9Vq'N m
24 Formulary }YO}LQ-|
24.1 Sign Conventions, Symbols, and Definitions `pUArqf
24.2 The Cardinal Points 'wt|buu-H
24.3 Image Equations <k5~z(
24.4 Paraxial Ray Tracing (Surface by Surface) t_Wn<)XA
24.5 Invariants dp+Y?ufr
24.6 Paraxial Ray Tracing (Component by Component) mio'm
24.7 Two-Componenet Relationships 7:%K-LeaQu
24.8 Third-Order Aberrations – Surface Contributions e>)5j1
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs T5;D0tM/
24.10 Stop Shift Equations I,;)pWX=@
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces kv b-=
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) |_*1/Wz@
O=/Tx2i;
B=Os?'2[
Glossary =x}/q4}L
Reference quYZD6IH
Index