"Modern Lens Design" 2nd Edition by Warren J. Smith er.CDKD%L
?~QIALA
Contents of Modern Lens Design 2nd Edition KA276#
,JEbd1Uf
1 Introduction 4TwQO$C
1.1 Lens Design Books AC.A'|"]i
1.2 Reference Material tyDY'W\]
1.3 Specifications iHp\o=#
1.4 Lens Design nCKbgM'"
1.5 Lens Design Program Features aRc '
1.6 About This Book A`u$A9[
T`9-VX;`
2 Automatic Lens Design Kwhdu<6
2.2 The Merit Function V
>,Z-&.%
2.3 Local Minima c:l]=O
2.4 The Landscape Lens 2Nj9U#A
2.5 Types of Merit Function SxjCwX">
2.6 Stagnation ~=Ncp9ej#
2.7 Generalized Simulated Annealing #2tCV't
2.8 Considerations about Variables for Optimization j4R 4H;
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems |fHB[ W#
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits vSW
L$Y2
2.11 Spectral Weighting UHGcnz<
2.12 How to Get Started X[W]=yJJ
~^vC,]hU
3 Improving a Design Uw<&Wm`'
3.1 Lens Design Tip Sheet: Standard Improvement Techniques rQP"Y[
3.2 Glass Changes ( Index and V Values ) b8f+,2Tk
3.3 Splitting Elements ap}5ElMR
3.4 Separating a Cemented Doublet |8)Xc=Hz
3.5 Compounding an Element F8+e,x
3.6 Vignetting and Its Uses p[WX'M0f
3.7 Eliminating a Weak Element; the Concentric Problem * \HRw +cL
3.8 Balancing Aberrations {5%/ T,
3.9 The Symmetrical Principle oY`qI nM_
3.10 Aspheric Surfaces -s$<Op{s
j|e[s ?d
4 Evaluation: How Good is This Design xiyxrR;
4.1 The Uses of a Preliminary Evaluation <SVmOmJ-K
4.2 OPD versus Measures of Performance x"(9II*
4.3 Geometric Blur Spot Size versus Certain Aberrations K<v:-TjQZ:
4.4 Interpreting MTF - The Modulation Transfer Function e(1k0W4B
4.5 Fabrication Considerations 50a\e
mh;X~.98
5 Lens Design Data >m_v5K
5.1 About the Sample Lens Designs D{'#er
5.2 Lens Prescriptions, Drawings, and Aberration Plots ^^(<c,NX#M
5.3 Estimating the Potential of a Redesign *(cU]NUH_
5.4 Scaling a Desing, Its Aberrations, and Its MTF eFTX6XB:i
5.5 Notes on the Interpretation of Ray Intercept Plots V)D-pV V
5.6 Various Evaluation Plot K%}}fw2RMN
oJ78jGTnb
6 Telescope Objective H:a|x#"
6.1 The Thin Airspaced Doublet 'Zk<l#"}
6.2 Merit Function for a Telescope Objective CsS p=(
6.3 The Design of an f/7 Cemented Doublet Telescope Objective R#4^s
6.4 Spherochromatism AV @\ +0
6.5 Zonal Spherical Aberration 30FykNh
6.6 Induced Aberrations {aN(d3c
6.7 Three-Element Objectives 7SI)1_%G
6.8 Secondary Spectrum (Apochromatic Systems) H]&!'\aUz
6.9 The Design of an f/7 Apochromatic Triplet JatHSW7j9
6.10 The Diffractive Surface in Lens Design ;Mj002.\G
6.11 A Final Note S=gW(c2'
FQf#*
7 Eyepieces and Magnifiers bdV3v`
7.1 Eyepieces [V@yRWI
7.2 A Pair of Magnifier Designs dDKqq(9(`
7.3 The Simple, Classical Eyepieces Rq7p29w
7.4 Design Story of an Eyepiece for a 6*30 Binocular #Y[H8TW
7.5 Four-Element Eyepieces /BH.>R4`A
7.6 Five-Element Eyepieces ~4
FDKUC
7.7 Very High Index Eyepiece/Magnifier ?gV'(3
!
7.8 Six- and Seven-Element Eyepieces =LZ>su
# bX~=`
8 Cooke Triplet Anastigmats ccO
aCr
8.1 Airspaced Triplet Anastigmats <<3+g"enno
8.2 Glass Choice Ugi5OKdj7)
8.3 Vertex Length and Residual Aberrations [Hcaw
8.4 Other Design Considerations lSc,AOXp
8.5 A Plastic, Aspheric Triplet Camera Lens 4`mO+.za1
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet :$"7-a%f
8.7 Possible Improvement to Our “Basic” Triplet k]I*:'178
8.7 The Rear Earth (Lanthanum) Glasses KR3-Hb4
8.9 Aspherizing the Surfaces X*Z5 P
8.10 Increasing the Element Thickness L+Pc<U)T+
r`]7S_t5T
9 Split Triplets ~eo^`4O{{
|vy]8?Ak
10 The Tessar, Heliar, and Other Compounded Triplets *1;23BiH-
10.1 The Classic Tessar rrQ0qg
10.2 The Heliar/Pentac ci7~KewJ*
10.3 The Portrait Lens and the Enlarger Lens \ j]~>9
10.4 Other Compounded Triplets w67xl
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar *4#on>
3%NE/lw1
11 Double-Meniscus Anastigmats onzA7Gre
11.1 Meniscus Components >5i ?JUZ
11.2 The Hypergon, Totogon, and Metrogon 0^>E`/
11.3 A Two Element Aspheric Thick Meniscus Camera Lens }Z6nN)[|0Y
11.4 Protar, Dagor, and Convertible Lenses GUCM4jVT^
11.5 The Split Dagor uAb 03Q
11.6 The Dogmar A*Q[k 9B
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens eH=c|m]!P
/s-d?
12 The Biotar or Double-Gauss Lens CTU9~~Xk
12.1 The Basic Six-Element Version &5/JfNe3
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens -ddOh<U>
12.3 The Seven-Element Biotar - Split-Rear Singlet "4[<]pq
12.4 The Seven-Element Biotar - Broken Contact Front Doublet =n
}Yqny
12.5 The Seven-Element Biotar - One Compounded Outer Element ^4hc+sh0D
12.6 The Eight-Element Biotar )b (X
12.7 A “Doubled Double-Gauss” Relay *'^:S#=
!@yQK<0
13 Telephoto Lenses ]xB6cPdLu
13.1 The Basic Telephoto E<a.LW@
13.2 Close-up or Macro Lenses <"ae4
13.3 Telephoto Designs ZX]A )5G
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ZW2s[p r
!ZA}b[
#,Bj!'Q'-
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Z>HNe9pr
14.1 The Reverse Telephoto Principle J]]\&MtaO
14.2 The Basic Retrofocus Lens ypT9 8
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 67
O<*M
2_Jb9:/X
15 Wide Angle Lenses with Negative Outer Lenses /p[y1
WV~SL/k|
16 The Petzval Lens; Head-up Display Lenses F$C+R&V_
16.1 The Petzval Portrait Lens T;%+ ]:w<
16.2 The Petzval Projection Lens Vdy\4 nu(
16.3 The Petzval with a Field Flattener &0h=4i=6r
16.4 Very Height Speed Petzval Lenses ;l#?SYY
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems +ks$UvtY
+9}' s{
17 Microscope Objectives 4=
$!_,.
17.1 General Considerations Q^kMCrp
17.2 Classic Objective Design Forms; The Aplanatic Front hf[IEK
17.3 Flat-Field Objectives bF7`] 83
17.4 Reflecting Objectives wISzT^RS
17.5 The Microscope Objective Designs @s?oJpo
SFOQM*H
18 Mirror and Catadioptric Systems tdb4?^.s
18.1 The Good and Bad Points of Mirrors 7Fc |
18.2 The Classic Two-Mirror Systems X~#@rg!"
18.3 Catadioptric Systems .>oM
z&
18.4 Aspheric Correctors and Schmidt Systems \ /sF:~=
18.5 Confocal Paraboloids /^8t'Jjd,
18.6 Unobscured Systems R=QM;
18.7 Design of a Schmidt-Cassegrain “from Scratch” 34]%d<;A
.>a$g7Rj
19 Infrared and Ultraviolet Systems np&HEh 6
19.1 Infrared Optics rcpvH}N:
19.2 IR Objective Lenses 7~ILRj5Nq
19.3 IR Telescope gFgcxe6
19.4 Laser Beam Expanders <6gU2@1
19,5 Ultraviolet Systems =I{S;md
19.6 Microlithographic Lenses cRPr9LfD@
(2 mS v
20 Zoom Lenses WoJ]@Me8
20.1 Zoom Lenses $t%" Tr
20.2 Zoom Lenses for Point and Shoot Cameras ~ 6TfW~V
20.3 A 20X Video Zoom Lens ~V|KT}H
20.4 A Zoom Scanner Lens c
'/2F0y
20.5 A Possible Zoom Lens Design Procedure \y<+Fac1S
yFa&GxSq
21 Projection TV Lenses and Macro Lenses baA HP"
21.1 Projection TV Lenses C[^a/P`i
21.2 Macro Lenses chM t5L+5
Y'\3ux0]4'
22 Scanner/ , Laser Disk and Collimator Lenses Ynv 9v\n|
22.1 Monochromatic Systems '[0
3L9
22.2 Scanner Lenses YL_!#<k@
22.3 Laser Disk, Focusing, and Collimator Lenses [UUM^!1
Uia)5z z8
23 Tolerance Budgeting &xF4p,7
23.1 The Tolerance Budget #{.pQi})
23.2 Additive Tolerances \0xzBs1!
23.3 Establishing the Tolerance Budget ^S>!kt7io
^2(";.m
24 Formulary tauP1&%oH{
24.1 Sign Conventions, Symbols, and Definitions ZzSJm+&'
24.2 The Cardinal Points )3d:S*ly
24.3 Image Equations T749@! v`z
24.4 Paraxial Ray Tracing (Surface by Surface) `V$cz88b
24.5 Invariants k0Oc,P`'*
24.6 Paraxial Ray Tracing (Component by Component) w4>:uyE
24.7 Two-Componenet Relationships L|vaTidc0
24.8 Third-Order Aberrations – Surface Contributions :z}~U3,JE
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ZzwZ,(
24.10 Stop Shift Equations
3RG/X
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces *m2d#f
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ant-\w>}
V~tu<"%
.oB'ttF1
Glossary :X]lXock0
Reference p2M?pV
Index