"Modern Lens Design" 2nd Edition by Warren J. Smith ^pS+/ZSi^
`/"nTB
Contents of Modern Lens Design 2nd Edition WEa2E?*
@v}B6j b;
1 Introduction k-E{d04-2
1.1 Lens Design Books "c(Sysl.L
1.2 Reference Material TgTnqR@/
1.3 Specifications aZet0?Qr
1.4 Lens Design YC=S5;
1.5 Lens Design Program Features SVa6V}"Iv
1.6 About This Book R*zO
dxY
`^(jm
2 Automatic Lens Design Q \]Xm>
2.2 The Merit Function ?
b[n|^wS
2.3 Local Minima 2oZ9laJO
2.4 The Landscape Lens e8h,,:l3j
2.5 Types of Merit Function T*I?9d{k
2.6 Stagnation EQIUSh)M
2.7 Generalized Simulated Annealing
0G <hn8>
2.8 Considerations about Variables for Optimization c=[q(|+O!
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 2b=)6H1
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits G~wF nl%
2.11 Spectral Weighting .fzu"XAPu
2.12 How to Get Started ,&7Wa-vf
QC0!p"
3 Improving a Design &[a Tw{2
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Q<6P. PTya
3.2 Glass Changes ( Index and V Values ) b@t5`Y-+K
3.3 Splitting Elements T#!lPH :&h
3.4 Separating a Cemented Doublet >Z Ke
3.5 Compounding an Element 85|fyX
3.6 Vignetting and Its Uses p<`+sf}A:
3.7 Eliminating a Weak Element; the Concentric Problem WlV
z,t'if
3.8 Balancing Aberrations 6P`)%zj
3.9 The Symmetrical Principle 2X88:
3.10 Aspheric Surfaces |<`.fOxJP
maSgRf[g
4 Evaluation: How Good is This Design -$<O\5cAQ
4.1 The Uses of a Preliminary Evaluation (QB+%2v
4.2 OPD versus Measures of Performance J$9:jE-4
4.3 Geometric Blur Spot Size versus Certain Aberrations h?UVDzI!O
4.4 Interpreting MTF - The Modulation Transfer Function hzY[
G:
4.5 Fabrication Considerations G",.,Px
yg;_.4TpIO
5 Lens Design Data Y\+KoR';
5.1 About the Sample Lens Designs R4e&^tI@*
5.2 Lens Prescriptions, Drawings, and Aberration Plots PoShQR<
5.3 Estimating the Potential of a Redesign =l942p
5.4 Scaling a Desing, Its Aberrations, and Its MTF &hV Zx
5.5 Notes on the Interpretation of Ray Intercept Plots {13!vS%5
5.6 Various Evaluation Plot b!$ }ma;B
x`Fjf/1T*m
6 Telescope Objective >qn/<??
6.1 The Thin Airspaced Doublet N;HIsOT}t
6.2 Merit Function for a Telescope Objective
BRbV7&
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 8
Op.eYe
6.4 Spherochromatism kGN||h
6.5 Zonal Spherical Aberration >_X/[<
6.6 Induced Aberrations
0=6/yc
6.7 Three-Element Objectives ,smF^l
6.8 Secondary Spectrum (Apochromatic Systems) Ulqh@CE)
6.9 The Design of an f/7 Apochromatic Triplet (A/0@f1#
6.10 The Diffractive Surface in Lens Design ~fzuwz
6.11 A Final Note 9 1P4:6
80ZnM%/}
7 Eyepieces and Magnifiers TSo:7&|
7.1 Eyepieces 6ri#Lw
7.2 A Pair of Magnifier Designs h3Fo-]0
7.3 The Simple, Classical Eyepieces TYjA:d9YH
7.4 Design Story of an Eyepiece for a 6*30 Binocular
ErbSl
7.5 Four-Element Eyepieces |V`S>m%N
7.6 Five-Element Eyepieces 0,FC
YTtj$
7.7 Very High Index Eyepiece/Magnifier ua
8m;>R
7.8 Six- and Seven-Element Eyepieces S|R|]J|
;vO@m!h}U
8 Cooke Triplet Anastigmats iRV;Fks
8.1 Airspaced Triplet Anastigmats 3vJ12=
8.2 Glass Choice mVm4fHEYwU
8.3 Vertex Length and Residual Aberrations K5ZnS`c;
8.4 Other Design Considerations I ftxSaP
8.5 A Plastic, Aspheric Triplet Camera Lens 5n:71$6[
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet Ly(P=M>"y
8.7 Possible Improvement to Our “Basic” Triplet BSXdvI1y
8.7 The Rear Earth (Lanthanum) Glasses H`<?<ak6'M
8.9 Aspherizing the Surfaces 6 ,N6jaW
8.10 Increasing the Element Thickness ^Gz{6@TY5
#*%fu
9 Split Triplets t&c&KFK)I&
G%w_CMfH
10 The Tessar, Heliar, and Other Compounded Triplets Qp:6=o0:
10.1 The Classic Tessar +cfziQ$'
10.2 The Heliar/Pentac 3-Y=EH_0
10.3 The Portrait Lens and the Enlarger Lens &?a.mh/8[[
10.4 Other Compounded Triplets 0B3 QVbp'
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar W7!.#b(hU
G8NRj9k?
11 Double-Meniscus Anastigmats t*+! n.p
11.1 Meniscus Components I}:L]H{E
11.2 The Hypergon, Totogon, and Metrogon b!~TAT&8
11.3 A Two Element Aspheric Thick Meniscus Camera Lens B1w0cS%%:
11.4 Protar, Dagor, and Convertible Lenses B!q?_[k,
11.5 The Split Dagor ^!@*P,'I
11.6 The Dogmar #)i&DJ^Y
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens )|T`17-
\j:gr>4
12 The Biotar or Double-Gauss Lens I#l;~a<9z
12.1 The Basic Six-Element Version ABWb>EZ8
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 2oNV=b[
12.3 The Seven-Element Biotar - Split-Rear Singlet (Nt[v;BnO
12.4 The Seven-Element Biotar - Broken Contact Front Doublet z<QIuq
12.5 The Seven-Element Biotar - One Compounded Outer Element w~v<v&
12.6 The Eight-Element Biotar
8xo;E=`
12.7 A “Doubled Double-Gauss” Relay sQ(1/"gb
j6X LyeG7
13 Telephoto Lenses Qg>L,ZO
13.1 The Basic Telephoto ]IXAucI]
13.2 Close-up or Macro Lenses X\G)81Q.S
13.3 Telephoto Designs wG:$6
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch -><QFJ
Dh8(HiXf:
-R@JIe_28f
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 8dV=1O$/
14.1 The Reverse Telephoto Principle {F)E\)$G
14.2 The Basic Retrofocus Lens XZBj=2~-3
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 9L=;KtE1
nh. b/\o
15 Wide Angle Lenses with Negative Outer Lenses ho|8U
(+$ol'i
16 The Petzval Lens; Head-up Display Lenses qnTi_c
16.1 The Petzval Portrait Lens tBTJmih"
16.2 The Petzval Projection Lens j/`Up
16.3 The Petzval with a Field Flattener [#zE.
TW
16.4 Very Height Speed Petzval Lenses T:)% P6/
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 9C1b^^Kb
5)x6Q|-u
17 Microscope Objectives 0Ts!(b]B
17.1 General Considerations =u[rOU{X"W
17.2 Classic Objective Design Forms; The Aplanatic Front %30T{n:
17.3 Flat-Field Objectives 9g+UJ\u^
17.4 Reflecting Objectives >~>{;Wq(p+
17.5 The Microscope Objective Designs 9M0d+:YJ
#_,uE9
18 Mirror and Catadioptric Systems
$Gd5wmb!
18.1 The Good and Bad Points of Mirrors B^Bbso'{1
18.2 The Classic Two-Mirror Systems X#Ak'%J
18.3 Catadioptric Systems -Cml0}.O
18.4 Aspheric Correctors and Schmidt Systems _H/67dcz,
18.5 Confocal Paraboloids ][rTQt m
18.6 Unobscured Systems tbRE/L<
18.7 Design of a Schmidt-Cassegrain “from Scratch” u,!4vKx
2Z-,c;21
19 Infrared and Ultraviolet Systems 8t--#sDy{0
19.1 Infrared Optics 3P3:F2S R
19.2 IR Objective Lenses kYmo7
19.3 IR Telescope b3P9Yoj-
19.4 Laser Beam Expanders Yo@m50s$
19,5 Ultraviolet Systems f^ywW[dF
19.6 Microlithographic Lenses 7s$6XO!
)fy<P;g
20 Zoom Lenses qYDj*wqf
20.1 Zoom Lenses n8
GF8a
20.2 Zoom Lenses for Point and Shoot Cameras A/hpYa
20.3 A 20X Video Zoom Lens +i_'gDy$
20.4 A Zoom Scanner Lens okVp\RC
20.5 A Possible Zoom Lens Design Procedure .O;!W<Ef$
EI%M
Azj}
21 Projection TV Lenses and Macro Lenses KuU3DTS85Z
21.1 Projection TV Lenses e2qpJ4i
21.2 Macro Lenses %f>X-*}NI-
8Yo-~,Gb
22 Scanner/ , Laser Disk and Collimator Lenses DXt]b,
22.1 Monochromatic Systems )#)nBM2\
22.2 Scanner Lenses <8g *O2
22.3 Laser Disk, Focusing, and Collimator Lenses 2Ti" s -
J&n ^y
23 Tolerance Budgeting Z={D0`
23.1 The Tolerance Budget A8#.1uEgNb
23.2 Additive Tolerances #:
dR^zr<
23.3 Establishing the Tolerance Budget :,urb*
>a?OXqYP
24 Formulary [vZfH!vLP
24.1 Sign Conventions, Symbols, and Definitions [0d-CEp[
24.2 The Cardinal Points &e/@yu)x,
24.3 Image Equations Bm65W
24.4 Paraxial Ray Tracing (Surface by Surface) }g%KvYB_
24.5 Invariants 3"HGEUqA
24.6 Paraxial Ray Tracing (Component by Component)
7=$+k]U8
24.7 Two-Componenet Relationships v; je <DT
24.8 Third-Order Aberrations – Surface Contributions L`<T'3G
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Mp]yKl
24.10 Stop Shift Equations 8=lHUn9l
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces HGU?bJ~6o
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) aW52.X z%8
1}i&HIr!b
~uP
r]#
Glossary D{Hh#x8Y
Reference -d$8WSI8
Index