"Modern Lens Design" 2nd Edition by Warren J. Smith lX7#3ti:
wicg8[T=B
Contents of Modern Lens Design 2nd Edition V5A7w
V3~
9GQTe1[t4
1 Introduction S@*@*>s^
1.1 Lens Design Books wYF)G;[wM
1.2 Reference Material mV'd9(s?
1.3 Specifications Uz62!)
1.4 Lens Design v'iQLUgI
1.5 Lens Design Program Features _e-a>y
1.6 About This Book o= 8yp2vG
:)MZgW
2 Automatic Lens Design *'`-plS7
2.2 The Merit Function Ep'C FNbtW
2.3 Local Minima )
.]Z}g&
2.4 The Landscape Lens #p[=iP
2.5 Types of Merit Function w}2yi#E[
2.6 Stagnation &MKv_
2.7 Generalized Simulated Annealing , n
EeI&
2.8 Considerations about Variables for Optimization %Ajf|Go0/G
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems O=+C Kx@
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits [Q%3=pm_
2.11 Spectral Weighting ksK
lw_%o
2.12 How to Get Started r2hm`]\8M
"oTwMU
3 Improving a Design b0&dpMgh:
3.1 Lens Design Tip Sheet: Standard Improvement Techniques D)!k
3.2 Glass Changes ( Index and V Values ) '~a!~F~>
3.3 Splitting Elements xAoozDj
3.4 Separating a Cemented Doublet ]#J]f
3.5 Compounding an Element *.K}`89T
3.6 Vignetting and Its Uses ricDP 9#a
3.7 Eliminating a Weak Element; the Concentric Problem Cvl"")ZZ`
3.8 Balancing Aberrations h<QXr'4+
3.9 The Symmetrical Principle jUfc&bi3
3.10 Aspheric Surfaces yC _X@o-n
;PbyR}s
4 Evaluation: How Good is This Design 7%F9.h
4.1 The Uses of a Preliminary Evaluation HWHGxg['r
4.2 OPD versus Measures of Performance L'Wcb
=;
4.3 Geometric Blur Spot Size versus Certain Aberrations $U6)km4
4.4 Interpreting MTF - The Modulation Transfer Function M2m@N-+R
4.5 Fabrication Considerations SWmdU]
*D9QwQ
_|
5 Lens Design Data )X7ZX#ttH
5.1 About the Sample Lens Designs E]e6a^J#
5.2 Lens Prescriptions, Drawings, and Aberration Plots \"uR&D
5.3 Estimating the Potential of a Redesign Jl4zj>8~
5.4 Scaling a Desing, Its Aberrations, and Its MTF <ZnAPh
5.5 Notes on the Interpretation of Ray Intercept Plots ,R]7{7$
5.6 Various Evaluation Plot Karyipn}
IYrO;GQ
6 Telescope Objective i.'f<z$<
6.1 The Thin Airspaced Doublet {j(,Q qB;f
6.2 Merit Function for a Telescope Objective "%sW/ph
6.3 The Design of an f/7 Cemented Doublet Telescope Objective $w65/
6.4 Spherochromatism x JepDCUJ>
6.5 Zonal Spherical Aberration /]vg_&)=
6.6 Induced Aberrations mH8"k+k
6.7 Three-Element Objectives {0[qERj"z
6.8 Secondary Spectrum (Apochromatic Systems) uL1-@D,
6.9 The Design of an f/7 Apochromatic Triplet xo]|m\#k5E
6.10 The Diffractive Surface in Lens Design W"~G]a+
6.11 A Final Note }F\0Bl&
YoahqXR`
7 Eyepieces and Magnifiers gsZCWT
7.1 Eyepieces 'g$|:bw/
7.2 A Pair of Magnifier Designs KBOxr5w
7.3 The Simple, Classical Eyepieces ")8wu1V-
7.4 Design Story of an Eyepiece for a 6*30 Binocular x0 j$]$
7.5 Four-Element Eyepieces V%3K")
7.6 Five-Element Eyepieces K.1#cf
^'
7.7 Very High Index Eyepiece/Magnifier |}#Rn`*2y
7.8 Six- and Seven-Element Eyepieces g Ts5xDvJ
WSh+5](:
8 Cooke Triplet Anastigmats `s.y!(`q
8.1 Airspaced Triplet Anastigmats O1-Ne.$
8.2 Glass Choice z5Po,@W
8.3 Vertex Length and Residual Aberrations x0
3|L!n
8.4 Other Design Considerations CjD2FnjT
8.5 A Plastic, Aspheric Triplet Camera Lens 9GCxF`OB
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet UW40Y3W0
8.7 Possible Improvement to Our “Basic” Triplet /#.6IV(
8.7 The Rear Earth (Lanthanum) Glasses k ELV]iWb
8.9 Aspherizing the Surfaces &%FpNU9
8.10 Increasing the Element Thickness 0;]tC\D1
?-Oy/Y K
9 Split Triplets >7
4'g}
}yXa1#3
10 The Tessar, Heliar, and Other Compounded Triplets #N7@p}P
10.1 The Classic Tessar $n>.;CV
10.2 The Heliar/Pentac 9.>v
;:vL
10.3 The Portrait Lens and the Enlarger Lens XN??^1{J}]
10.4 Other Compounded Triplets M$|^?U>cm
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar S _1R]n1/
^e)KEkh
11 Double-Meniscus Anastigmats m~%IHWO'
11.1 Meniscus Components z0doLb^!
11.2 The Hypergon, Totogon, and Metrogon F4KXx^~o
11.3 A Two Element Aspheric Thick Meniscus Camera Lens bluhiiATd
11.4 Protar, Dagor, and Convertible Lenses ~6E
`6;`
11.5 The Split Dagor bT0CQ_g21
11.6 The Dogmar uh@ZHef[l
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens td%EbxJK]`
#6@7XC
12 The Biotar or Double-Gauss Lens s [@II]
12.1 The Basic Six-Element Version z[[|'02{
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 1VH7z
12.3 The Seven-Element Biotar - Split-Rear Singlet *7`;{O
12.4 The Seven-Element Biotar - Broken Contact Front Doublet P**h\+M>{
12.5 The Seven-Element Biotar - One Compounded Outer Element O~trv,?)
12.6 The Eight-Element Biotar XWH~o:0<2
12.7 A “Doubled Double-Gauss” Relay \za 0?b
D O#4E<]5
13 Telephoto Lenses 6-j><'
13.1 The Basic Telephoto w}X <]u
13.2 Close-up or Macro Lenses A^*0{F?,)
13.3 Telephoto Designs ms`R^6Ra
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch #]cO]
I
8<{)|GoqB
~*ST fyFw
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses r3{Cu z
14.1 The Reverse Telephoto Principle tg.[.vKs
14.2 The Basic Retrofocus Lens {OH"d
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Fe{lM'
8
^yyL4{/
15 Wide Angle Lenses with Negative Outer Lenses qwoF4_VN
s<h]2W
16 The Petzval Lens; Head-up Display Lenses JPRo<jt=
16.1 The Petzval Portrait Lens R %aed>zo
16.2 The Petzval Projection Lens $!H;,Jxv
16.3 The Petzval with a Field Flattener aHuZzYQ*"j
16.4 Very Height Speed Petzval Lenses L9W'TvTwo
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems M&wf4)*%0+
Gx,<|v
17 Microscope Objectives e5W 8YNA
17.1 General Considerations Pp#
17.2 Classic Objective Design Forms; The Aplanatic Front Py_yIwQqg
17.3 Flat-Field Objectives nc4KeEl
17.4 Reflecting Objectives DI"KH)XD
17.5 The Microscope Objective Designs Wl\.*^`k
:2ILN.&
18 Mirror and Catadioptric Systems 8eGq.+5G
18.1 The Good and Bad Points of Mirrors 'I^3r~_
18.2 The Classic Two-Mirror Systems t<h[Lb%{T4
18.3 Catadioptric Systems waT'|9{
18.4 Aspheric Correctors and Schmidt Systems 3k3-Ts
18.5 Confocal Paraboloids +#ufW%ZG
18.6 Unobscured Systems 9EHhVi
18.7 Design of a Schmidt-Cassegrain “from Scratch” HQGn[7JW
.FYxVF.
19 Infrared and Ultraviolet Systems z_nv|5"
19.1 Infrared Optics h9-^aB$8^
19.2 IR Objective Lenses C&wp*
19.3 IR Telescope $ S(<7[Z
19.4 Laser Beam Expanders ,6@s N'c
19,5 Ultraviolet Systems @$mh0K>
19.6 Microlithographic Lenses N5_`
>oh7f|
20 Zoom Lenses pUF$Nq>og
20.1 Zoom Lenses *62Cf[a
20.2 Zoom Lenses for Point and Shoot Cameras ^hZZ5(</8P
20.3 A 20X Video Zoom Lens inQ1$
20.4 A Zoom Scanner Lens l5P!9P
20.5 A Possible Zoom Lens Design Procedure [A\DuJx
(r*"}"ZG
21 Projection TV Lenses and Macro Lenses -A1@a=q
21.1 Projection TV Lenses fj"1TtPq#
21.2 Macro Lenses W2>VgMR [
Y(mnGaVn
22 Scanner/ , Laser Disk and Collimator Lenses l/xpAx
22.1 Monochromatic Systems E>_N|j)9
22.2 Scanner Lenses -<0xS.^
22.3 Laser Disk, Focusing, and Collimator Lenses <DR$WsDG
{3Y
R_^>?
23 Tolerance Budgeting d%,@,>>)
23.1 The Tolerance Budget xB:]{9r
23.2 Additive Tolerances ;}B6`v
23.3 Establishing the Tolerance Budget BFnp[93N
E|_J
24 Formulary pGRk
24.1 Sign Conventions, Symbols, and Definitions yRAfIB$T}"
24.2 The Cardinal Points 3le$0f:O
24.3 Image Equations *(g0{V
24.4 Paraxial Ray Tracing (Surface by Surface) M!tR>NMH
24.5 Invariants tn38T%
24.6 Paraxial Ray Tracing (Component by Component) RoFoEp
24.7 Two-Componenet Relationships E[NszM[P
24.8 Third-Order Aberrations – Surface Contributions mswAao<y&x
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs HkPdqNC&
24.10 Stop Shift Equations b9R0"w!ml
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces joA>-k04
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) x1`4hB
R :*1Y\o(
`(uN_zvH
Glossary u u$Jwn!S
Reference {[pzqzL6
Index