"Modern Lens Design" 2nd Edition by Warren J. Smith <_Z.fdUA
@9n|5.i
Contents of Modern Lens Design 2nd Edition p~=z)7%e'
E8"&gblg
1 Introduction O"EL3$9V
1.1 Lens Design Books }$L1A
1.2 Reference Material }7b{ZbDI
1.3 Specifications DTM(SN8R+n
1.4 Lens Design 5@
td0
1.5 Lens Design Program Features FE{c{G<
1.6 About This Book 83
R_8
vV$^`WY4
2 Automatic Lens Design &"gX
7cK8
2.2 The Merit Function )\VuN-d
2.3 Local Minima <Opw"yY&q]
2.4 The Landscape Lens TbT/ 5W3
2.5 Types of Merit Function $BgaLJs/O
2.6 Stagnation y7CO%SA
2.7 Generalized Simulated Annealing \}u/0UF97
2.8 Considerations about Variables for Optimization ;<''oY
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ~*y7%L4B
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits D|m0Vj b
2.11 Spectral Weighting 3`vKEThY)
2.12 How to Get Started T,uF^%$@AQ
kdlmj[=
3 Improving a Design ]3,
3.1 Lens Design Tip Sheet: Standard Improvement Techniques -!qjBK,`X
3.2 Glass Changes ( Index and V Values ) u9~Ncz
3.3 Splitting Elements F%&lM[N%
3.4 Separating a Cemented Doublet @ NL<v-t
3.5 Compounding an Element IDw`k[k
3.6 Vignetting and Its Uses 4g2`[< S
3.7 Eliminating a Weak Element; the Concentric Problem Mt`LOdiC_
3.8 Balancing Aberrations qLb~^'<iD
3.9 The Symmetrical Principle ~"vS$>+
3.10 Aspheric Surfaces &Ejhw3Nw
2Q]W
4 Evaluation: How Good is This Design iHf):J?8
y
4.1 The Uses of a Preliminary Evaluation ^W%F?#ELN2
4.2 OPD versus Measures of Performance J%xUO1
4.3 Geometric Blur Spot Size versus Certain Aberrations k}E_1_S(
4.4 Interpreting MTF - The Modulation Transfer Function ]+a~/
4.5 Fabrication Considerations SSla^,MHef
4gev^/^^
5 Lens Design Data /ar0K9`c
5.1 About the Sample Lens Designs =-/'$7R,
5.2 Lens Prescriptions, Drawings, and Aberration Plots cC/32SmY4
5.3 Estimating the Potential of a Redesign l/B+k
5.4 Scaling a Desing, Its Aberrations, and Its MTF J(!=Dno
5.5 Notes on the Interpretation of Ray Intercept Plots a3w6&e`
5.6 Various Evaluation Plot "q= ss:(
oMLs22Do?
6 Telescope Objective e1JHN
6.1 The Thin Airspaced Doublet
"$J5cco
6.2 Merit Function for a Telescope Objective N#RC;
6.3 The Design of an f/7 Cemented Doublet Telescope Objective XRQ1Uh6
6.4 Spherochromatism G4'Ee5(o
6.5 Zonal Spherical Aberration )6X-m9.X
6.6 Induced Aberrations AY<L8
6.7 Three-Element Objectives 6LCR ;~
]
6.8 Secondary Spectrum (Apochromatic Systems) 1BW 9,Xr
6.9 The Design of an f/7 Apochromatic Triplet -}j(_]t
6.10 The Diffractive Surface in Lens Design X 5}=|%Y
6.11 A Final Note +$VDV4l
W)D?8*
7 Eyepieces and Magnifiers -:'%YHxX
7.1 Eyepieces Hf1b&8&:K
7.2 A Pair of Magnifier Designs I9aiAD0s
7.3 The Simple, Classical Eyepieces sKKc_H3YSH
7.4 Design Story of an Eyepiece for a 6*30 Binocular 3WwCo.q;m
7.5 Four-Element Eyepieces d/Wp>A@dob
7.6 Five-Element Eyepieces `EvO^L
7.7 Very High Index Eyepiece/Magnifier |Rx+2`6Dp
7.8 Six- and Seven-Element Eyepieces 5%QYe]D
!T:7xEr
8 Cooke Triplet Anastigmats qc)+T_m
8.1 Airspaced Triplet Anastigmats c V@^<
8.2 Glass Choice -}sMOy`
8.3 Vertex Length and Residual Aberrations B:UPSX)A
8.4 Other Design Considerations ZlE=P4`X:
8.5 A Plastic, Aspheric Triplet Camera Lens d_&pxy?
>
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 3_boEYl0
8.7 Possible Improvement to Our “Basic” Triplet R=,
pv'
8.7 The Rear Earth (Lanthanum) Glasses qBK68B)
8.9 Aspherizing the Surfaces /g9^g(
8.10 Increasing the Element Thickness FYE(lEjxi
_99 +Vjy
9 Split Triplets t.RDS2N|
aQY.96yo
10 The Tessar, Heliar, and Other Compounded Triplets >$CNR*}@
10.1 The Classic Tessar a;U)#*(5|v
10.2 The Heliar/Pentac a_[+id
10.3 The Portrait Lens and the Enlarger Lens bf1$:09
10.4 Other Compounded Triplets `
-SC,qHw
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar WL'!M&h
|Thm5,ao
11 Double-Meniscus Anastigmats K%/\XnCY
11.1 Meniscus Components s[UV(::E
11.2 The Hypergon, Totogon, and Metrogon <6hs<qXqi
11.3 A Two Element Aspheric Thick Meniscus Camera Lens EW4a@
11.4 Protar, Dagor, and Convertible Lenses jpR]V86G
11.5 The Split Dagor Gx4uf
11.6 The Dogmar 8dt=@pwx&
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens };"_Ku4#-
nZL!}3@<
12 The Biotar or Double-Gauss Lens %yKcp5_
12.1 The Basic Six-Element Version wouk~>Jft
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens =u0a/2u|
12.3 The Seven-Element Biotar - Split-Rear Singlet !H c6$
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ~p{YuW[e
12.5 The Seven-Element Biotar - One Compounded Outer Element !nsr( 7X2
12.6 The Eight-Element Biotar A(BjU:D(Oj
12.7 A “Doubled Double-Gauss” Relay Bonj K#
UL&>]aQ
13 Telephoto Lenses )w&|VvM )L
13.1 The Basic Telephoto ;Z"Iv
13.2 Close-up or Macro Lenses s-x1<+E(
13.3 Telephoto Designs *M:p[.=1
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch g}hNsU=$5~
+
>:}
i88`W&tI{
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses YbWz!.WPe
14.1 The Reverse Telephoto Principle ~mah.8G
14.2 The Basic Retrofocus Lens |na9I6
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 48J{Y3F
{IBbN05 ;
15 Wide Angle Lenses with Negative Outer Lenses O)&ME
asp\4-?$o
16 The Petzval Lens; Head-up Display Lenses 6fBA#Kb
16.1 The Petzval Portrait Lens e,#5I(E
16.2 The Petzval Projection Lens t)k;5B`> &
16.3 The Petzval with a Field Flattener 0lYP!\J3]%
16.4 Very Height Speed Petzval Lenses lY,9bSF$
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems Y}yh6r;i
[-e$4^+9
17 Microscope Objectives j 7O!uUQQ
17.1 General Considerations wxvVtV{u>|
17.2 Classic Objective Design Forms; The Aplanatic Front Jzy:^PObT
17.3 Flat-Field Objectives f1o^:}5x
17.4 Reflecting Objectives ga;t`5+d
17.5 The Microscope Objective Designs m)6-D-&7
/Q#eP m
18 Mirror and Catadioptric Systems $}YN`:{
18.1 The Good and Bad Points of Mirrors l#>A.-R*`
18.2 The Classic Two-Mirror Systems XIM?$p^
18.3 Catadioptric Systems ?G&J_L=@Y
18.4 Aspheric Correctors and Schmidt Systems PqyR,Bcx0
18.5 Confocal Paraboloids ~W B-WI\
18.6 Unobscured Systems +>a(9r|:
18.7 Design of a Schmidt-Cassegrain “from Scratch” [fkt3fS
B*QLKO:)i
19 Infrared and Ultraviolet Systems '?{L
gj^R
19.1 Infrared Optics Q4N0j' QA
19.2 IR Objective Lenses %t:13eM
19.3 IR Telescope kqC7^x
19.4 Laser Beam Expanders OH
88d:
19,5 Ultraviolet Systems 7eZwpg?K
19.6 Microlithographic Lenses 0.(7R,-
EW]8k@&g
20 Zoom Lenses ]`h@[fYge
20.1 Zoom Lenses XwU1CejP0
20.2 Zoom Lenses for Point and Shoot Cameras w0<1=;_%
20.3 A 20X Video Zoom Lens <
r b5'
20.4 A Zoom Scanner Lens Q5Mn=
20.5 A Possible Zoom Lens Design Procedure <<YH4}wZ
4QNwu7TeR
21 Projection TV Lenses and Macro Lenses ~"R;p}5"
21.1 Projection TV Lenses O#vIn}
21.2 Macro Lenses "Vwk&~B%
*tDxwD7
22 Scanner/ , Laser Disk and Collimator Lenses -Zg@#H
22.1 Monochromatic Systems ?i~mt'O
22.2 Scanner Lenses $KGRpI
22.3 Laser Disk, Focusing, and Collimator Lenses UM+g8J{$*;
10_@'N
23 Tolerance Budgeting
/zir$
23.1 The Tolerance Budget `n e9&+
23.2 Additive Tolerances Y#U0g|UDn
23.3 Establishing the Tolerance Budget kH62#[J)yM
7V~
gqum
24 Formulary \ ERHnh
24.1 Sign Conventions, Symbols, and Definitions f2Tz5slE
24.2 The Cardinal Points >+ Im:fD
24.3 Image Equations 6:G::"ew
24.4 Paraxial Ray Tracing (Surface by Surface) H|;BT
24.5 Invariants $1D>}5Ex
24.6 Paraxial Ray Tracing (Component by Component) (xBWxeL~
24.7 Two-Componenet Relationships {8~xFYc:
24.8 Third-Order Aberrations – Surface Contributions 6bbzgULl
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs a
0qDRB
24.10 Stop Shift Equations DCSTp2
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ,L(q/#p
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) G`u";w_
nN[QUg
>#xIqxV,
Glossary rPJbbV",+^
Reference O-<nLB!Wf
Index