"Modern Lens Design" 2nd Edition by Warren J. Smith jI_TN5
HH&`f3
Contents of Modern Lens Design 2nd Edition 0vqXLFf
qq]ZkT}
1 Introduction eRWTuIV6
1.1 Lens Design Books |>gya&
1.2 Reference Material nBgksB*A
1.3 Specifications J)6RXt*!
1.4 Lens Design +`r;3kH ..
1.5 Lens Design Program Features 'ZgrN14
1.6 About This Book 7i`@`0
l`:M/z6"
2 Automatic Lens Design Q0Y0Zt,h
2.2 The Merit Function x\]%TTps
2.3 Local Minima jQFAlO(E':
2.4 The Landscape Lens @{+c6.*}
2.5 Types of Merit Function C:"Al-
2.6 Stagnation ;[R{oW
Nw
2.7 Generalized Simulated Annealing r{pTMcDS
2.8 Considerations about Variables for Optimization I0h/x5
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ^%@(>:)0
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits "~:o#~F6
2.11 Spectral Weighting VC:.ya|Z
2.12 How to Get Started [[}KCND
4GH?$p|LX
3 Improving a Design i(Cd#1<
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 6D_3Hwrs
3.2 Glass Changes ( Index and V Values ) 3WZ]9v{k
3.3 Splitting Elements 5`53lK.C
3.4 Separating a Cemented Doublet UiqHUrx
3.5 Compounding an Element `PXSQf
3.6 Vignetting and Its Uses @" UoQ_h%
3.7 Eliminating a Weak Element; the Concentric Problem )@Fuw*
3.8 Balancing Aberrations AifnC4
3.9 The Symmetrical Principle y*0bHzJ
3.10 Aspheric Surfaces ^31X-}tv
(, Il>cR4
4 Evaluation: How Good is This Design nsQx\Tnhx
4.1 The Uses of a Preliminary Evaluation eGwrSF#a)
4.2 OPD versus Measures of Performance R=yn4>I
4.3 Geometric Blur Spot Size versus Certain Aberrations HP}d`C5<R
4.4 Interpreting MTF - The Modulation Transfer Function 6nV]Ec~3[
4.5 Fabrication Considerations >T[1=;o]
rH"&
5 Lens Design Data g]PmmK_L
5.1 About the Sample Lens Designs 5(R ./
5.2 Lens Prescriptions, Drawings, and Aberration Plots i1v0J->
5.3 Estimating the Potential of a Redesign 78&jaw*1A
5.4 Scaling a Desing, Its Aberrations, and Its MTF GLrHb3@"N
5.5 Notes on the Interpretation of Ray Intercept Plots g)c<\%
5.6 Various Evaluation Plot H(GWC[tv
5TqB&GP0
6 Telescope Objective -\O%f)R
6.1 The Thin Airspaced Doublet 0Ah'G
6.2 Merit Function for a Telescope Objective A0Pg|M
6.3 The Design of an f/7 Cemented Doublet Telescope Objective Sz|;wsF{
6.4 Spherochromatism atRWKsY<
6.5 Zonal Spherical Aberration ^iAOz-H
6.6 Induced Aberrations 6K501!70g6
6.7 Three-Element Objectives s4uZ;
6.8 Secondary Spectrum (Apochromatic Systems) 'yd<<BM`
6.9 The Design of an f/7 Apochromatic Triplet [}Vne;V
6.10 The Diffractive Surface in Lens Design eT* )r~
6.11 A Final Note c@!%.# |y
qOAK`{b
7 Eyepieces and Magnifiers VX0q!Q
7.1 Eyepieces ?UCK
7.2 A Pair of Magnifier Designs \6~(#y
7.3 The Simple, Classical Eyepieces @(Q'J`
7.4 Design Story of an Eyepiece for a 6*30 Binocular /qp)n">
7.5 Four-Element Eyepieces OP>rEUtj
7.6 Five-Element Eyepieces %s<7M@]f
7.7 Very High Index Eyepiece/Magnifier @k~'b
7.8 Six- and Seven-Element Eyepieces (`<X9w,
8D7=]
8 Cooke Triplet Anastigmats Nr 5h%<`I
8.1 Airspaced Triplet Anastigmats X&R,-^
8.2 Glass Choice AG/?LPJ
8.3 Vertex Length and Residual Aberrations Al&)8x{p
8.4 Other Design Considerations
&!7{2E\7C
8.5 A Plastic, Aspheric Triplet Camera Lens SKO*x^"eU
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet d/oxRzk'L
8.7 Possible Improvement to Our “Basic” Triplet vZ3/t8$*
8.7 The Rear Earth (Lanthanum) Glasses JtA
tG%
8.9 Aspherizing the Surfaces ]@YBa4}w
8.10 Increasing the Element Thickness $KDH"J
P(B:tg
9 Split Triplets uXD?s3Wv
rBR,lS$4
10 The Tessar, Heliar, and Other Compounded Triplets \0.
c_
10.1 The Classic Tessar :ZrE/3_S
10.2 The Heliar/Pentac AY3nQH
10.3 The Portrait Lens and the Enlarger Lens -:Up$6PR
10.4 Other Compounded Triplets Ps=OL\i
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar t0t" =(d
DLMM1
A
11 Double-Meniscus Anastigmats mc37Y.
11.1 Meniscus Components -UD^O*U
11.2 The Hypergon, Totogon, and Metrogon =P>c1T1-
11.3 A Two Element Aspheric Thick Meniscus Camera Lens Wl!|+-
11.4 Protar, Dagor, and Convertible Lenses b|_Pt
11.5 The Split Dagor |cKo#nfzZ
11.6 The Dogmar ]!l]^/.
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 0Bbno9Yp
w#ha ^4
12 The Biotar or Double-Gauss Lens p) #7K
12.1 The Basic Six-Element Version zg)-RCG
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens L{XNOf3
12.3 The Seven-Element Biotar - Split-Rear Singlet /*,hR >UG
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Buazm3q8H
12.5 The Seven-Element Biotar - One Compounded Outer Element 9a4Xf%!F>z
12.6 The Eight-Element Biotar ME'hN->c
12.7 A “Doubled Double-Gauss” Relay '#JC 6#X
dS9L( &
13 Telephoto Lenses
ey4RKk,
13.1 The Basic Telephoto ^eu={0k
13.2 Close-up or Macro Lenses LRe2wT>I
13.3 Telephoto Designs yCk9Xc
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch 2|Of$oMc
oUXi4lsSc
-44{b<:D
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses RE*;_DF
14.1 The Reverse Telephoto Principle !{hC99q6
14.2 The Basic Retrofocus Lens ~o"VZp
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ShFC@)<lJ
V)HX+D>
15 Wide Angle Lenses with Negative Outer Lenses .aJ\^Fx
`|9NxF+
16 The Petzval Lens; Head-up Display Lenses (A@~]N,U/
16.1 The Petzval Portrait Lens qyA%_;ReMY
16.2 The Petzval Projection Lens G.#`DaP
16.3 The Petzval with a Field Flattener Q[5j5vry
16.4 Very Height Speed Petzval Lenses G.ag$KF
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems uU+R,P0
#ZFedK0vv
17 Microscope Objectives e15_$M;RW
17.1 General Considerations os<YfMM<:/
17.2 Classic Objective Design Forms; The Aplanatic Front I.V?O}
17.3 Flat-Field Objectives QOb+6qy:3
17.4 Reflecting Objectives SEf:u
17.5 The Microscope Objective Designs *RPdU.
fV}: eEo|Y
18 Mirror and Catadioptric Systems J`uO~W"
18.1 The Good and Bad Points of Mirrors CC8M1iW3
18.2 The Classic Two-Mirror Systems soSdlV{
18.3 Catadioptric Systems f=$w,^)M
18.4 Aspheric Correctors and Schmidt Systems k`#OXLR
18.5 Confocal Paraboloids >gQJ6q
18.6 Unobscured Systems <oJM||ZA
18.7 Design of a Schmidt-Cassegrain “from Scratch” -eZ$wn![
|Z), OW
19 Infrared and Ultraviolet Systems n2e#rn
19.1 Infrared Optics (Nzup3j
19.2 IR Objective Lenses |@Cx%aEKU
19.3 IR Telescope 5"5tY
19.4 Laser Beam Expanders O/Q7{5n
19,5 Ultraviolet Systems P1gW+*?
19.6 Microlithographic Lenses WAd5,RZ?
i .O670D
20 Zoom Lenses olHT* mr
20.1 Zoom Lenses C2l=7+X#W
20.2 Zoom Lenses for Point and Shoot Cameras HUP~
20.3 A 20X Video Zoom Lens yJyovfJz.
20.4 A Zoom Scanner Lens Jf#Ika&px
20.5 A Possible Zoom Lens Design Procedure he/WqCZg
-'q#u C
21 Projection TV Lenses and Macro Lenses F_<n8U:Y
21.1 Projection TV Lenses u
ZzO$e
21.2 Macro Lenses &oU) ,H
[i"6\p&
22 Scanner/ , Laser Disk and Collimator Lenses %3Ba9Nmid
22.1 Monochromatic Systems @ )bCh(u
22.2 Scanner Lenses n5Coxvy1
22.3 Laser Disk, Focusing, and Collimator Lenses <%_7%
5ov F$qn
23 Tolerance Budgeting 7?1[sPM
23.1 The Tolerance Budget *-.{->#Y
23.2 Additive Tolerances V8C62X
23.3 Establishing the Tolerance Budget HITw{RPrW
QsXy(w#F
24 Formulary X-lB1uq^
24.1 Sign Conventions, Symbols, and Definitions bi@z<Xm%
24.2 The Cardinal Points l0
Eh?
24.3 Image Equations BXzn-S
24.4 Paraxial Ray Tracing (Surface by Surface) 4V6^@
24.5 Invariants ApT8;F B
24.6 Paraxial Ray Tracing (Component by Component) @k|V4
24.7 Two-Componenet Relationships &d%0[Ui`
24.8 Third-Order Aberrations – Surface Contributions ,$H[DX
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs e$vvm bK.
24.10 Stop Shift Equations =yR$^VSY
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 3dl#:Si
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) t)p . $
o(gEyK
/s/\5-U7q
Glossary goMv8d
Reference ,
z-#B]
Index