"Modern Lens Design" 2nd Edition by Warren J. Smith Ly)(_Tp@+
,d>X/kd|o
Contents of Modern Lens Design 2nd Edition grCO-S|j^
1KYbL8c
1 Introduction \YlF>{LVe
1.1 Lens Design Books ..]*Ao2
1.2 Reference Material VqClM
1.3 Specifications rI<nUy P?
1.4 Lens Design /}nrF4S
1.5 Lens Design Program Features `?]rr0.}hp
1.6 About This Book ?H[5O+P[
xv$)u<Ve
2 Automatic Lens Design k~1j/VHv
2.2 The Merit Function X$- boe?
2.3 Local Minima I>H;o{X#
2.4 The Landscape Lens b@wBR9s
2.5 Types of Merit Function ," C[Qg(
2.6 Stagnation 7bonOt
Y
2.7 Generalized Simulated Annealing ^$=tcoQG
2.8 Considerations about Variables for Optimization #5y9L
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 3"'# |6O9
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 1c)\
2.11 Spectral Weighting 0Oc}rRH(C
2.12 How to Get Started r*6"'W>c6
8
)mjy!,
3 Improving a Design DIG0:)4R.
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 9U|<q
3.2 Glass Changes ( Index and V Values ) cXk6e.Uz
3.3 Splitting Elements &\1'1`N1
3.4 Separating a Cemented Doublet DHm[8 Qp
3.5 Compounding an Element 9u?)vR[@e
3.6 Vignetting and Its Uses /`+Hwdk
3.7 Eliminating a Weak Element; the Concentric Problem 3tT|9Tb@
3.8 Balancing Aberrations %XJQ0CE<(
3.9 The Symmetrical Principle |jahpji6
3.10 Aspheric Surfaces 7_Ba3+9jpa
6_R\l@a
4 Evaluation: How Good is This Design `E} p77
4.1 The Uses of a Preliminary Evaluation (px*R~}
4.2 OPD versus Measures of Performance X~v4"|a
4.3 Geometric Blur Spot Size versus Certain Aberrations :cc[Jco@w
4.4 Interpreting MTF - The Modulation Transfer Function G&x'=dJ
4.5 Fabrication Considerations .vv5t
ZjU=~)O}H
5 Lens Design Data wv , GBZ-f
5.1 About the Sample Lens Designs cT-K@dg
5.2 Lens Prescriptions, Drawings, and Aberration Plots C9<4~IM
w
5.3 Estimating the Potential of a Redesign W\it+/
5.4 Scaling a Desing, Its Aberrations, and Its MTF 2#z=zd
5.5 Notes on the Interpretation of Ray Intercept Plots ta&Q4v&-
5.6 Various Evaluation Plot 9?uqQ
|Du,UY/
6 Telescope Objective %{R_^Y8t
6.1 The Thin Airspaced Doublet 2c}B
6.2 Merit Function for a Telescope Objective Q0V^PDF
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 6xQ"bFm
6.4 Spherochromatism bnijM/73
6.5 Zonal Spherical Aberration $d'CBsu|<
6.6 Induced Aberrations 0TTIaa$
6.7 Three-Element Objectives Bj@x$v#/^
6.8 Secondary Spectrum (Apochromatic Systems) `FUFK/7
w\
6.9 The Design of an f/7 Apochromatic Triplet 9;=q=O/
6.10 The Diffractive Surface in Lens Design 0jBKCu
6.11 A Final Note KHvIN}V5?3
/@&(P#h
7 Eyepieces and Magnifiers c}\
'x5:o
7.1 Eyepieces |vv]Z(_
7.2 A Pair of Magnifier Designs [ZuVUOm
7.3 The Simple, Classical Eyepieces l<:`~\#
7.4 Design Story of an Eyepiece for a 6*30 Binocular <O ;&qT*b
7.5 Four-Element Eyepieces 8)N0S% B
7.6 Five-Element Eyepieces y:Z$LmPc<
7.7 Very High Index Eyepiece/Magnifier A&N$tH
7.8 Six- and Seven-Element Eyepieces KzV.+f
YMi/uy
8 Cooke Triplet Anastigmats mHKJ
8.1 Airspaced Triplet Anastigmats ytEQ`
8.2 Glass Choice sNL+F
8.3 Vertex Length and Residual Aberrations I$n+DwKcN
8.4 Other Design Considerations iwUv`>l&
8.5 A Plastic, Aspheric Triplet Camera Lens nt7|f,_J
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet {`a(Tl8V
8.7 Possible Improvement to Our “Basic” Triplet /K f L+"^|
8.7 The Rear Earth (Lanthanum) Glasses V]Sgx00;
8.9 Aspherizing the Surfaces FtE90=$
8.10 Increasing the Element Thickness + a-D#^2;
Kk 7GZ
9 Split Triplets f6Ml[!aU
}@wVW))6$
10 The Tessar, Heliar, and Other Compounded Triplets h{I`7X
10.1 The Classic Tessar z^'n*h
10.2 The Heliar/Pentac iecWa:('
10.3 The Portrait Lens and the Enlarger Lens Wu ,S\!
10.4 Other Compounded Triplets Q |%-9^
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar :i.t)ES
Hj2<ZL
11 Double-Meniscus Anastigmats q]K'p,'
11.1 Meniscus Components 975
_d_U
11.2 The Hypergon, Totogon, and Metrogon >
V8sm/M
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ^;+[8:Kb
11.4 Protar, Dagor, and Convertible Lenses wZQ)jo7*g
11.5 The Split Dagor d ,UCH
11.6 The Dogmar M_Bu,<q^
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ^+wk
opXDm\
12 The Biotar or Double-Gauss Lens [_V:)
12.1 The Basic Six-Element Version K U$`!h
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens mg` j[<wp
12.3 The Seven-Element Biotar - Split-Rear Singlet 9:Si]
Pp+S
12.4 The Seven-Element Biotar - Broken Contact Front Doublet z?4=h Sy
12.5 The Seven-Element Biotar - One Compounded Outer Element 44~hw:
12.6 The Eight-Element Biotar #BsW
12.7 A “Doubled Double-Gauss” Relay !.*iw
k`
UU[H@ym#
13 Telephoto Lenses <6/= y1QC)
13.1 The Basic Telephoto Ps3~{zH`
13.2 Close-up or Macro Lenses ytiyF2Kp
13.3 Telephoto Designs eQ;Q4
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch /D'M 24
;g+]klR!
J1X~vQAe
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Z5$fE7ba+
14.1 The Reverse Telephoto Principle Vc _:*
14.2 The Basic Retrofocus Lens A@2Bs5F
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses f0DK>L
tb,9a!?
15 Wide Angle Lenses with Negative Outer Lenses IXWQ)
6Hk="$6K
16 The Petzval Lens; Head-up Display Lenses _w>uI57U
16.1 The Petzval Portrait Lens p?JQ[K7i
16.2 The Petzval Projection Lens s1bU
16.3 The Petzval with a Field Flattener VO_dA4C}z
16.4 Very Height Speed Petzval Lenses xzr<k Sp
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems LTXz$Z]
w#9_eq|3
17 Microscope Objectives |cgui
17.1 General Considerations Ys3uPs
17.2 Classic Objective Design Forms; The Aplanatic Front ezUQ>
e
17.3 Flat-Field Objectives DW>ES/B8$(
17.4 Reflecting Objectives f@d9Hqr+l;
17.5 The Microscope Objective Designs ,EI:gLH
wXbsS)#/
18 Mirror and Catadioptric Systems I3(d<+M
18.1 The Good and Bad Points of Mirrors gi$XB}L+X
18.2 The Classic Two-Mirror Systems "}zt`3
18.3 Catadioptric Systems nZ
E )_
18.4 Aspheric Correctors and Schmidt Systems 2khh4?|\
18.5 Confocal Paraboloids ?:uNN
18.6 Unobscured Systems Skxd<gv
18.7 Design of a Schmidt-Cassegrain “from Scratch” )+EN$*H
|##GIIv;i
19 Infrared and Ultraviolet Systems cU8x Upq
19.1 Infrared Optics )/>A6A:
19.2 IR Objective Lenses
^2C>L}
19.3 IR Telescope S-c ^eLzQ
19.4 Laser Beam Expanders g`[$XiR
19,5 Ultraviolet Systems J#
EP%
19.6 Microlithographic Lenses #]Y*0Wzpfn
snC/H G7
20 Zoom Lenses {v,)G)obWw
20.1 Zoom Lenses |<c
WllN
20.2 Zoom Lenses for Point and Shoot Cameras 9 <\`nm
20.3 A 20X Video Zoom Lens jatr/
20.4 A Zoom Scanner Lens [>Fm[5x
20.5 A Possible Zoom Lens Design Procedure pW|u P8#
Zh'&-c_J
21 Projection TV Lenses and Macro Lenses *x(Jq?5O7X
21.1 Projection TV Lenses Cy@ cLdV
21.2 Macro Lenses :NE/Ddgc'
}r3~rG<D71
22 Scanner/ , Laser Disk and Collimator Lenses yWb4Ify
22.1 Monochromatic Systems J=H)JH3
22.2 Scanner Lenses H=~9CJ+tc
22.3 Laser Disk, Focusing, and Collimator Lenses Gu;OVLR|
7lA:)a_!]
23 Tolerance Budgeting v~=\H
23.1 The Tolerance Budget r,NgG!zq<
23.2 Additive Tolerances fk{0d
23.3 Establishing the Tolerance Budget J^
G
*y]+dK&-
24 Formulary 7x k|+!
24.1 Sign Conventions, Symbols, and Definitions <Ef[c@3
24.2 The Cardinal Points #g9ZX16}
24.3 Image Equations Gquuy7[&
24.4 Paraxial Ray Tracing (Surface by Surface) d%ME@6K)
24.5 Invariants lm0N5(XP
24.6 Paraxial Ray Tracing (Component by Component) Jp~zX
lu
24.7 Two-Componenet Relationships RE"^
)-
24.8 Third-Order Aberrations – Surface Contributions g0&\l}&%U
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 5kMWW*Xtf
24.10 Stop Shift Equations ,D=fFpn
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces |FNCXlgZ
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) WNy3@+@GZ
^}$O|t
Im?LIgt$
Glossary :dnJY%/q
Reference ,wj"! o#
Index