"Modern Lens Design" 2nd Edition by Warren J. Smith 8zwH^q[`r
j}8^gz]
Contents of Modern Lens Design 2nd Edition vJW`aN1<I3
QEmktc1 7
1 Introduction MJKPpQ(,
1.1 Lens Design Books 3[~LmA
1.2 Reference Material ;]rj Kc=
1.3 Specifications c3\p@}
1.4 Lens Design 6O@Lx]t
1.5 Lens Design Program Features 8"u.GL.
1.6 About This Book 4dh>B>Q
{4%ddJn[.)
2 Automatic Lens Design J.0&gP V
2.2 The Merit Function 9 I&[6}
2.3 Local Minima =
@FT$GQ
2.4 The Landscape Lens T8j<\0WW
2.5 Types of Merit Function 9s*UJIL
2.6 Stagnation YKx+z[A/p
2.7 Generalized Simulated Annealing >PGsY[N
2.8 Considerations about Variables for Optimization 0bGQO&s
[
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 0BOL0<Wq
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ,yi@?lc
2.11 Spectral Weighting sr:hRQ27
2.12 How to Get Started zS?DXE
lB|.TCbW
3 Improving a Design -1R7 8(1
3.1 Lens Design Tip Sheet: Standard Improvement Techniques HaOSFltf#
3.2 Glass Changes ( Index and V Values ) WkoYkkuzj
3.3 Splitting Elements ^;Yjs.bI`F
3.4 Separating a Cemented Doublet *mN8Qd
3.5 Compounding an Element zXd#kw;
3.6 Vignetting and Its Uses /EvT%h?p
3.7 Eliminating a Weak Element; the Concentric Problem Q%t
_Epe
3.8 Balancing Aberrations d-]!aFj|U
3.9 The Symmetrical Principle 4 @9cO)m
3.10 Aspheric Surfaces <*p
[bN_0T.YI
4 Evaluation: How Good is This Design <-Ax)zE
4.1 The Uses of a Preliminary Evaluation CTc#*LJx>j
4.2 OPD versus Measures of Performance Ge76/T%{Q
4.3 Geometric Blur Spot Size versus Certain Aberrations |@)jS.Bn
4.4 Interpreting MTF - The Modulation Transfer Function h:vI:V[/X
4.5 Fabrication Considerations ulk yP
2}ywNVS
5 Lens Design Data 1rh2!4)7
5.1 About the Sample Lens Designs QX9['B<
5.2 Lens Prescriptions, Drawings, and Aberration Plots EFs\zWF
5.3 Estimating the Potential of a Redesign QmsS,Zljo
5.4 Scaling a Desing, Its Aberrations, and Its MTF _%aT3C}k
5.5 Notes on the Interpretation of Ray Intercept Plots {|Fn<&G
5.6 Various Evaluation Plot 4{"
v
o^BX:\}
6 Telescope Objective PC)V".W1
6.1 The Thin Airspaced Doublet yGb^k R}d
6.2 Merit Function for a Telescope Objective SLud}|f;o
6.3 The Design of an f/7 Cemented Doublet Telescope Objective lq27^K
6.4 Spherochromatism
@Lm (bW
6.5 Zonal Spherical Aberration {d,^tG}
6.6 Induced Aberrations "6iq_!#L
6.7 Three-Element Objectives zM'2opiUY
6.8 Secondary Spectrum (Apochromatic Systems) OEHw%
6.9 The Design of an f/7 Apochromatic Triplet 8noo^QO
6.10 The Diffractive Surface in Lens Design TI3@/SB>
6.11 A Final Note !(N,tZ
46c0;E\9
7 Eyepieces and Magnifiers 0O?!fd n
7.1 Eyepieces e\]CZ5hs3
7.2 A Pair of Magnifier Designs "3NE%1T
7.3 The Simple, Classical Eyepieces mmEe@-lE
7.4 Design Story of an Eyepiece for a 6*30 Binocular diF2:80o
7.5 Four-Element Eyepieces @z(s\T
7.6 Five-Element Eyepieces $2k9gO
7.7 Very High Index Eyepiece/Magnifier y Xi$w.gr
7.8 Six- and Seven-Element Eyepieces 97VS
xhr
5U/C
0{6
8 Cooke Triplet Anastigmats `VRt{p
8.1 Airspaced Triplet Anastigmats UC"_#!3
8.2 Glass Choice +RD{<~i
8.3 Vertex Length and Residual Aberrations qBWt(jY
8.4 Other Design Considerations ==~
lc;
8.5 A Plastic, Aspheric Triplet Camera Lens @X#e
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet lQer|?#
8.7 Possible Improvement to Our “Basic” Triplet {+|Em (M
8.7 The Rear Earth (Lanthanum) Glasses {hKf
'd9E
8.9 Aspherizing the Surfaces \H.1I=<
8.10 Increasing the Element Thickness BoPJ;6?>}
X1lL@ `r.5
9 Split Triplets 'FGf#l<
$:0?"?o);
10 The Tessar, Heliar, and Other Compounded Triplets }m-+EUEo9
10.1 The Classic Tessar VXu1Y xY
10.2 The Heliar/Pentac v
iM6q<Ht
10.3 The Portrait Lens and the Enlarger Lens BO-=X
78f@
10.4 Other Compounded Triplets mybjcsV4
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar OW8"7*irT
[+4--#&{
11 Double-Meniscus Anastigmats .tRWL!
11.1 Meniscus Components {@`Z`h"N
11.2 The Hypergon, Totogon, and Metrogon 2sXX0kq~V
11.3 A Two Element Aspheric Thick Meniscus Camera Lens :jljM(\
11.4 Protar, Dagor, and Convertible Lenses Klk[h
11.5 The Split Dagor O8WLulo
11.6 The Dogmar YW)&IA2
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens )I9W a*I
!l1ycQM
12 The Biotar or Double-Gauss Lens (8OaXif
12.1 The Basic Six-Element Version -OV!56&
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens GOhGSV#
12.3 The Seven-Element Biotar - Split-Rear Singlet >2?O-WXe
12.4 The Seven-Element Biotar - Broken Contact Front Doublet )]C7+{ImC
12.5 The Seven-Element Biotar - One Compounded Outer Element ^H
UNq[sQ
12.6 The Eight-Element Biotar B*j
AD2
12.7 A “Doubled Double-Gauss” Relay l*C(FPw4
m>@ *-*8k
13 Telephoto Lenses (E(kw="
13.1 The Basic Telephoto gsp|?)]x
13.2 Close-up or Macro Lenses w6[uM%fHG
13.3 Telephoto Designs {(!j6|jK
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch q!+m,
!M
H{3A6fb<
2Aq%;=+*
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Gdf*x<T1
14.1 The Reverse Telephoto Principle K\]ey;Bd
14.2 The Basic Retrofocus Lens C~dD'Tq]
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses <kr%ylhIu
-I#1xJU
15 Wide Angle Lenses with Negative Outer Lenses S+EC!;@Xg
J 4E G
16 The Petzval Lens; Head-up Display Lenses vo_m$ /O
16.1 The Petzval Portrait Lens b:uMON,H
16.2 The Petzval Projection Lens &jHnM^nQ
16.3 The Petzval with a Field Flattener G&/RJLX|w
16.4 Very Height Speed Petzval Lenses &\, ZtaB
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 'rwnAr
$pm5G} .
17 Microscope Objectives 3G7Qo
17.1 General Considerations 8s_'tw/{
17.2 Classic Objective Design Forms; The Aplanatic Front J`8bh~7
17.3 Flat-Field Objectives W\? _o@d
17.4 Reflecting Objectives hw [G
17.5 The Microscope Objective Designs x!o>zT\
Gmi$Nl!~
18 Mirror and Catadioptric Systems E|jbbCZy2
18.1 The Good and Bad Points of Mirrors ;nbUbRb
18.2 The Classic Two-Mirror Systems 7VdG6`TDR
18.3 Catadioptric Systems ,nELWzz%{
18.4 Aspheric Correctors and Schmidt Systems MR@*09zP(?
18.5 Confocal Paraboloids )J"Lne*"
18.6 Unobscured Systems x\m !3
18.7 Design of a Schmidt-Cassegrain “from Scratch” wtDy-H n
l`s_#3
19 Infrared and Ultraviolet Systems \y9( b
19.1 Infrared Optics a0oM KGW:
19.2 IR Objective Lenses u^T{sQ"_
19.3 IR Telescope 9?M><bBX
19.4 Laser Beam Expanders H *gF>1
19,5 Ultraviolet Systems csV.AN'obq
19.6 Microlithographic Lenses :b&O{>M]Y
B|-E3v:f4
20 Zoom Lenses C"I:^&sL
20.1 Zoom Lenses bt/u^E
20.2 Zoom Lenses for Point and Shoot Cameras h4 s!VK1X
20.3 A 20X Video Zoom Lens p<\yp<g
20.4 A Zoom Scanner Lens Wv]NFHe#
20.5 A Possible Zoom Lens Design Procedure 4A_}:nU
3sf+u oV
21 Projection TV Lenses and Macro Lenses :6 ?&L
21.1 Projection TV Lenses +IiL(\ew
21.2 Macro Lenses OYEL` !Q
*OT6)]|k
22 Scanner/ , Laser Disk and Collimator Lenses 1YmB2h[Z
22.1 Monochromatic Systems {BBL`tg60
22.2 Scanner Lenses vt3yCS
22.3 Laser Disk, Focusing, and Collimator Lenses LB|FVNW/S
h^h!OQK Q
23 Tolerance Budgeting /XG4O
23.1 The Tolerance Budget ]e?cKC\"e
23.2 Additive Tolerances 821@qr|`e
23.3 Establishing the Tolerance Budget jjgjeY
jOppru5U
24 Formulary "Ldi<xq%xl
24.1 Sign Conventions, Symbols, and Definitions }%B^Vl%ZZ
24.2 The Cardinal Points 6@TGa%:G
24.3 Image Equations _h4{Sx
24.4 Paraxial Ray Tracing (Surface by Surface) 72qbxPY13h
24.5 Invariants URbu=U
24.6 Paraxial Ray Tracing (Component by Component) oe$Y=`
24.7 Two-Componenet Relationships ]g
jhrD
24.8 Third-Order Aberrations – Surface Contributions $0C1';=^}
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 8'Eu6H&$G
24.10 Stop Shift Equations 0s"g%gq|
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces _VFxzM9f
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 2YD;Gb[8
6vrMR&#a
`2S G{5o;
Glossary 8-Ik .,}
Reference DW^E46k)A
Index