"Modern Lens Design" 2nd Edition by Warren J. Smith Yh%wf3
UEO
a&ByV!%%+_
Contents of Modern Lens Design 2nd Edition Sf'5/9<DW+
O.}gG6u5
1 Introduction CC-:dNb
1.1 Lens Design Books =K>Z{%i
1.2 Reference Material }Voh5*$E`
1.3 Specifications x[^A9
1.4 Lens Design 835Upj>
1.5 Lens Design Program Features #f~a\}$I
1.6 About This Book )?bb]hZg?O
?-84_i
2 Automatic Lens Design jRkq^}
2.2 The Merit Function pz
IMj_
2.3 Local Minima ^[Er%yr0
2.4 The Landscape Lens 9iy|=
2.5 Types of Merit Function Q%xY/xH]
2.6 Stagnation CzEn_ZMb
2.7 Generalized Simulated Annealing O({_x@
2.8 Considerations about Variables for Optimization Wkk Nyg,
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems @!'H'GvA
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits @ty|HXW
2.11 Spectral Weighting uWInx6p
2.12 How to Get Started KJ)&(Yx
lmcDA,7
3 Improving a Design
*&0Hz{|
3.1 Lens Design Tip Sheet: Standard Improvement Techniques QMxz@HGa|
3.2 Glass Changes ( Index and V Values ) piFQ7B
3.3 Splitting Elements 5#o,]tP
3.4 Separating a Cemented Doublet LI<5;oE;
3.5 Compounding an Element .am*d|&+G
3.6 Vignetting and Its Uses WO9/rF_
3.7 Eliminating a Weak Element; the Concentric Problem m8PB2h
3.8 Balancing Aberrations `j![
3.9 The Symmetrical Principle MX0B$yc$
3.10 Aspheric Surfaces 7:<Ed"rdE
_D4}[`
4 Evaluation: How Good is This Design Wd5t,8*8
4.1 The Uses of a Preliminary Evaluation 8 vw]u_e
4.2 OPD versus Measures of Performance T_Y }1n|7[
4.3 Geometric Blur Spot Size versus Certain Aberrations x+e
_pb
4.4 Interpreting MTF - The Modulation Transfer Function UVJ(iNK"
4.5 Fabrication Considerations X8x>oV;8
lpUtNy
5 Lens Design Data 5Z,lWp2A
5.1 About the Sample Lens Designs __iyBaX
5.2 Lens Prescriptions, Drawings, and Aberration Plots k#) .E X
5.3 Estimating the Potential of a Redesign #+PbcL
5.4 Scaling a Desing, Its Aberrations, and Its MTF (d#Z-w-
5.5 Notes on the Interpretation of Ray Intercept Plots ] O>7x
5.6 Various Evaluation Plot 3pW
MS&
b]#d04]
6 Telescope Objective 8Q -F
6.1 The Thin Airspaced Doublet AyO|9!F@A
6.2 Merit Function for a Telescope Objective c7IR06E
6.3 The Design of an f/7 Cemented Doublet Telescope Objective y}HC\A77uD
6.4 Spherochromatism 2QRn
c"
6.5 Zonal Spherical Aberration 3= zQ
U
6.6 Induced Aberrations eBIR*TZ):
6.7 Three-Element Objectives RAI&;"
6.8 Secondary Spectrum (Apochromatic Systems) ?\M6P?tpo&
6.9 The Design of an f/7 Apochromatic Triplet !y~b;>887
6.10 The Diffractive Surface in Lens Design F5MPy[
6.11 A Final Note 3&fFIab9
)6
<byO
7 Eyepieces and Magnifiers 4"x;XVNM[
7.1 Eyepieces WUS9zK
7.2 A Pair of Magnifier Designs u/'sdt
7.3 The Simple, Classical Eyepieces b_Jq=Gk`
7.4 Design Story of an Eyepiece for a 6*30 Binocular i?dKmRp(@y
7.5 Four-Element Eyepieces =>\-ma+
7.6 Five-Element Eyepieces S{T d/1}
7.7 Very High Index Eyepiece/Magnifier >wO$Vu
`t
7.8 Six- and Seven-Element Eyepieces h)^A3;2F
gCr|e}w-
8 Cooke Triplet Anastigmats zn1Rou]6
8.1 Airspaced Triplet Anastigmats (<ZkmIXN
8.2 Glass Choice r Ob"S*
8.3 Vertex Length and Residual Aberrations {FY[|:Cp
8.4 Other Design Considerations ?}v% JUcs
8.5 A Plastic, Aspheric Triplet Camera Lens rE `}?d
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet )2Ru!l#
8.7 Possible Improvement to Our “Basic” Triplet l)*,18n
8.7 The Rear Earth (Lanthanum) Glasses qK
vr*xlC
8.9 Aspherizing the Surfaces 2RUR=%C
8.10 Increasing the Element Thickness e)dWa'2<
/NX7Vev
9 Split Triplets Ca@=s
*3`oU\r
10 The Tessar, Heliar, and Other Compounded Triplets .`>l.gmi&
10.1 The Classic Tessar 0/@ X!|X
10.2 The Heliar/Pentac JOx,19r
10.3 The Portrait Lens and the Enlarger Lens Evq Ai/(g
10.4 Other Compounded Triplets w1@b5-
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar S50x0$%<W
J7wQ=!g
11 Double-Meniscus Anastigmats _c
]3nzIr
11.1 Meniscus Components 0$L0fhw.
11.2 The Hypergon, Totogon, and Metrogon F:o#
11.3 A Two Element Aspheric Thick Meniscus Camera Lens tWSvxGCzn%
11.4 Protar, Dagor, and Convertible Lenses j-`X_8W
11.5 The Split Dagor =ch
Af=
11.6 The Dogmar v;]I^Kq
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens }i7U}T
Qj<{oZp&
12 The Biotar or Double-Gauss Lens "G9'm
12.1 The Basic Six-Element Version Ig Vo%)n
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens DxKfWb5 R
12.3 The Seven-Element Biotar - Split-Rear Singlet
n~)HfY
12.4 The Seven-Element Biotar - Broken Contact Front Doublet SAG`^t
12.5 The Seven-Element Biotar - One Compounded Outer Element F\=Rm
12.6 The Eight-Element Biotar "vOfAo]`
12.7 A “Doubled Double-Gauss” Relay s|gD
(ND5CKCR^
13 Telephoto Lenses Zp(=[n5
13.1 The Basic Telephoto A`
o?+2s_
13.2 Close-up or Macro Lenses 3_\{[_W
13.3 Telephoto Designs De
nt?
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch vf'cx:m
_@/C~
En,)}yI
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses q]N?@l]
14.1 The Reverse Telephoto Principle ?
%+VG
14.2 The Basic Retrofocus Lens :qAc= IC%
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses E +Ujpd
wAu[pWD'6;
15 Wide Angle Lenses with Negative Outer Lenses cNuHXaWp
EO].qN-8
16 The Petzval Lens; Head-up Display Lenses ^5;vx
16.1 The Petzval Portrait Lens p<HTJ0
16.2 The Petzval Projection Lens aI={,\
16.3 The Petzval with a Field Flattener 7bonOt
Y
16.4 Very Height Speed Petzval Lenses ^$=tcoQG
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems #5y9L
3"'# |6O9
17 Microscope Objectives 1c)\
17.1 General Considerations 0Oc}rRH(C
17.2 Classic Objective Design Forms; The Aplanatic Front r*6"'W>c6
17.3 Flat-Field Objectives 8
)mjy!,
17.4 Reflecting Objectives DIG0:)4R.
17.5 The Microscope Objective Designs 9U|<q
cXk6e.Uz
18 Mirror and Catadioptric Systems &\1'1`N1
18.1 The Good and Bad Points of Mirrors DHm[8 Qp
18.2 The Classic Two-Mirror Systems 9u?)vR[@e
18.3 Catadioptric Systems /`+Hwdk
18.4 Aspheric Correctors and Schmidt Systems 3tT|9Tb@
18.5 Confocal Paraboloids "YG\
18.6 Unobscured Systems
aFRTNu/r
18.7 Design of a Schmidt-Cassegrain “from Scratch” |;A9A's
U#;51_
19 Infrared and Ultraviolet Systems y@o9~?M
19.1 Infrared Optics W!/vm
19.2 IR Objective Lenses t1e4H=d>
19.3 IR Telescope /7k.r}6\R
19.4 Laser Beam Expanders 1mJbQ#5
19,5 Ultraviolet Systems mb0n}I_AC
19.6 Microlithographic Lenses &l.x:eD
X,RT<GNNb
20 Zoom Lenses L w>-7)
20.1 Zoom Lenses y#S1c)vU
20.2 Zoom Lenses for Point and Shoot Cameras O9t=lrYV!
20.3 A 20X Video Zoom Lens j|VXC(6P,
20.4 A Zoom Scanner Lens ug^om{e-
20.5 A Possible Zoom Lens Design Procedure cVQatm
g!1I21M1~
21 Projection TV Lenses and Macro Lenses wVgi+P
21.1 Projection TV Lenses t|;%DA)fjw
21.2 Macro Lenses 2X|CuL{]
}FPM-M3y
22 Scanner/ , Laser Disk and Collimator Lenses b/}'Vf[
22.1 Monochromatic Systems ~TYbP
22.2 Scanner Lenses {]&R8?%
22.3 Laser Disk, Focusing, and Collimator Lenses DpA\r_D
<fNGhmL
23 Tolerance Budgeting DVObrL)znL
23.1 The Tolerance Budget Ur^YG4(
23.2 Additive Tolerances
MWBXs75I
23.3 Establishing the Tolerance Budget "@.Z#d|Y
`$J'UXtGc
24 Formulary U?8i'5)
24.1 Sign Conventions, Symbols, and Definitions \).Nag +
24.2 The Cardinal Points eh$G.-2N
24.3 Image Equations z>6.[Z(T
24.4 Paraxial Ray Tracing (Surface by Surface) &oA~
Tx
24.5 Invariants c#=&!FRe
24.6 Paraxial Ray Tracing (Component by Component) z{%oJ_
24.7 Two-Componenet Relationships !q!"UMiG
24.8 Third-Order Aberrations – Surface Contributions FyCBNtCv
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs T3=(`
24.10 Stop Shift Equations 4Mk8Cpz
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 1{^CfamF
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) s~L`53A
ZQ|5W6c
a;%I\w;2
Glossary ;:P7}v fz!
Reference 8Bq-0=E
Index