"Modern Lens Design" 2nd Edition by Warren J. Smith Cg 4l*"_
c^a Dr
Contents of Modern Lens Design 2nd Edition ']cRSj.
.*_uXQ
1 Introduction nJ{vO{N
1.1 Lens Design Books PW)Gd +y
1.2 Reference Material d>OLnG>
F
1.3 Specifications Okt0b|=`1*
1.4 Lens Design FvTc{"w /
1.5 Lens Design Program Features t=B>t S.hO
1.6 About This Book K[/sVaPZ
0S}ogU[k
2 Automatic Lens Design @}[yC['
2.2 The Merit Function `of`u B
2.3 Local Minima -YD+xPD
2.4 The Landscape Lens "z/)> ?Wn
2.5 Types of Merit Function /CW
0N@
2.6 Stagnation (|kcSnF0
2.7 Generalized Simulated Annealing |2'u@<(Z/
2.8 Considerations about Variables for Optimization G+dQ" cI9
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 34e>R?J
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits I(2qXOG
2.11 Spectral Weighting 'L1=:g.\i
2.12 How to Get Started }>T$2"pf
07FS|>DM'Z
3 Improving a Design EJ&aT etQ
3.1 Lens Design Tip Sheet: Standard Improvement Techniques zJ9[),;7B
3.2 Glass Changes ( Index and V Values ) XoZPz
3.3 Splitting Elements 0[SJ7k19
3.4 Separating a Cemented Doublet C[0*>W8o
3.5 Compounding an Element vvvH5NRm
3.6 Vignetting and Its Uses X_tc\}I]
3.7 Eliminating a Weak Element; the Concentric Problem t!S ja
3.8 Balancing Aberrations pA|Z%aL
3.9 The Symmetrical Principle 6Uik>e7?
3.10 Aspheric Surfaces 9]E;en NQ
#Y9'n0 AL
4 Evaluation: How Good is This Design J/ !Mt
4.1 The Uses of a Preliminary Evaluation M!Hn`_E
4.2 OPD versus Measures of Performance RD1N@sHDKc
4.3 Geometric Blur Spot Size versus Certain Aberrations [@RJ2q$
4.4 Interpreting MTF - The Modulation Transfer Function Rfuq(DwD6
4.5 Fabrication Considerations q[rBu9
/xseI)y.B
5 Lens Design Data =:~%$5[[
5.1 About the Sample Lens Designs l{u2W$8
5.2 Lens Prescriptions, Drawings, and Aberration Plots vsDR@Y}k
5.3 Estimating the Potential of a Redesign Aqp$JM
>
5.4 Scaling a Desing, Its Aberrations, and Its MTF Z6Kw'3
5.5 Notes on the Interpretation of Ray Intercept Plots ImnN&[Cu
5.6 Various Evaluation Plot +2WvGRC
KTzkJx
6 Telescope Objective %8N=4vTJ
6.1 The Thin Airspaced Doublet &t0toEj
6.2 Merit Function for a Telescope Objective PX%Y$`
6.3 The Design of an f/7 Cemented Doublet Telescope Objective b7nER]R
6.4 Spherochromatism q)Uh_l.Cj
6.5 Zonal Spherical Aberration ]EhU8bZ
6.6 Induced Aberrations c/bIt
6.7 Three-Element Objectives K@DK4{
6.8 Secondary Spectrum (Apochromatic Systems) K;fRDE){
6.9 The Design of an f/7 Apochromatic Triplet J#L"kz
6.10 The Diffractive Surface in Lens Design luYa+E0
6.11 A Final Note f-M 9OI
?jDdF
7 Eyepieces and Magnifiers ;K+'J0
7.1 Eyepieces TGe)%jZ
7.2 A Pair of Magnifier Designs e,0y+~
7.3 The Simple, Classical Eyepieces
equTKM
7.4 Design Story of an Eyepiece for a 6*30 Binocular n,.ZLuBEX
7.5 Four-Element Eyepieces F_ Cp,
7.6 Five-Element Eyepieces 2G4OK7x
7.7 Very High Index Eyepiece/Magnifier "N|gU;~W
7.8 Six- and Seven-Element Eyepieces 7j
<:hF~
/6$8djw
8 Cooke Triplet Anastigmats R"0fZENTG
8.1 Airspaced Triplet Anastigmats Le*sLuxk<
8.2 Glass Choice acXB
vs
8.3 Vertex Length and Residual Aberrations Ig*qn# Dd
8.4 Other Design Considerations ^I4/{,Ev
8.5 A Plastic, Aspheric Triplet Camera Lens ) C?emTih
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 1E]|>)$
8.7 Possible Improvement to Our “Basic” Triplet w
N-np3k
8.7 The Rear Earth (Lanthanum) Glasses "AAzBWd/
8.9 Aspherizing the Surfaces /M.@dW7
w
8.10 Increasing the Element Thickness /J-:?./
LZ"yMnhOf
9 Split Triplets $d[ xSwang
\vU1*:3
10 The Tessar, Heliar, and Other Compounded Triplets <o\2-fWvY
10.1 The Classic Tessar <Fc @T4Q,
10.2 The Heliar/Pentac lM<SoC;[
10.3 The Portrait Lens and the Enlarger Lens m3La;%aA0
10.4 Other Compounded Triplets tmCm54
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar 0."TSe83\
[^U#ic>cT
11 Double-Meniscus Anastigmats kDrqV{_
11.1 Meniscus Components BV9%|
11.2 The Hypergon, Totogon, and Metrogon AhjUFz
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 7i,Z c]
11.4 Protar, Dagor, and Convertible Lenses DKcg
11.5 The Split Dagor mM&*_#(
6
11.6 The Dogmar @L)=epC
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens !E0zj9 [ R
$h({x~Oj9
12 The Biotar or Double-Gauss Lens RnA>oKc
12.1 The Basic Six-Element Version cP4K9:k
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens FzDZ<dJ
12.3 The Seven-Element Biotar - Split-Rear Singlet J:{$\m'
12.4 The Seven-Element Biotar - Broken Contact Front Doublet -RSPYQjz
12.5 The Seven-Element Biotar - One Compounded Outer Element (Nky?*
12.6 The Eight-Element Biotar v0ngM)^q
12.7 A “Doubled Double-Gauss” Relay 7H1 ii
|+ ^-b}0
13 Telephoto Lenses |Bv?!
sjf
13.1 The Basic Telephoto X CjYm
13.2 Close-up or Macro Lenses :OF:(,J
13.3 Telephoto Designs
_>G=v!
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch 3Mnm2*\
/<HEcB
O N(H7
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Llf |fayq
14.1 The Reverse Telephoto Principle m]1=o7
14.2 The Basic Retrofocus Lens IQZBH2R
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses s[V$fvW
J|orvnkK
15 Wide Angle Lenses with Negative Outer Lenses o4)^U t+
{L!w/Ie X
16 The Petzval Lens; Head-up Display Lenses WhO;4-q)2
16.1 The Petzval Portrait Lens kH!I&4d&
16.2 The Petzval Projection Lens _L6WbRu|
16.3 The Petzval with a Field Flattener b9ON[qOMN
16.4 Very Height Speed Petzval Lenses Z=ayVsJ3
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems n\nC.|_G@
> n~l\
fC
17 Microscope Objectives CvCk#:@HM
17.1 General Considerations v;E7UL
.w
17.2 Classic Objective Design Forms; The Aplanatic Front d(>7BV
17.3 Flat-Field Objectives .b4_O
CGg
17.4 Reflecting Objectives `ym@U(;N
17.5 The Microscope Objective Designs y\'t{>U/
qsB,yckml
18 Mirror and Catadioptric Systems d9zI
A6y
18.1 The Good and Bad Points of Mirrors w1J&c' -
18.2 The Classic Two-Mirror Systems ?fog
34g
18.3 Catadioptric Systems Q0K4_iN)&
18.4 Aspheric Correctors and Schmidt Systems Lx-ofN\
18.5 Confocal Paraboloids \dyJ=tg
18.6 Unobscured Systems rz]0i@ehv'
18.7 Design of a Schmidt-Cassegrain “from Scratch” Hev S}L
`?Pk~7
19 Infrared and Ultraviolet Systems rh*Pl]'3z
19.1 Infrared Optics RVFQ!0
C
19.2 IR Objective Lenses i$)`U]
19.3 IR Telescope P@Wi^svj
19.4 Laser Beam Expanders x%ZgLvdp,
19,5 Ultraviolet Systems U!:Q|':=h
19.6 Microlithographic Lenses 8&6h()
\*}JdEHB
20 Zoom Lenses Zho d %n3
20.1 Zoom Lenses 7qB}Hvh
20.2 Zoom Lenses for Point and Shoot Cameras _y}]j;e8>{
20.3 A 20X Video Zoom Lens %]JSDb=C
20.4 A Zoom Scanner Lens })OgsBk
20.5 A Possible Zoom Lens Design Procedure 3K2`1+kBVG
pYo]lO
21 Projection TV Lenses and Macro Lenses VGoD2,(b^
21.1 Projection TV Lenses kji*7a?y
21.2 Macro Lenses V#?GDe}[
\UI7H1XDH
22 Scanner/ , Laser Disk and Collimator Lenses ^l#Z*0@><~
22.1 Monochromatic Systems QN_Zd@K*A
22.2 Scanner Lenses 1FU(j*~:
22.3 Laser Disk, Focusing, and Collimator Lenses g{@q
hKw4 [wB]
23 Tolerance Budgeting 5;+OpB
23.1 The Tolerance Budget ](3e +JC
23.2 Additive Tolerances 2R&msdF
23.3 Establishing the Tolerance Budget zbdmz
jX^uNmb
24 Formulary 2f1WT g)
24.1 Sign Conventions, Symbols, and Definitions gc-yUH0I
24.2 The Cardinal Points *%L:soM'Ll
24.3 Image Equations u8pJjn;
24.4 Paraxial Ray Tracing (Surface by Surface) n?*Fr sZ
24.5 Invariants TI-8I)
24.6 Paraxial Ray Tracing (Component by Component) * B!uYP
24.7 Two-Componenet Relationships 0
;$[
24.8 Third-Order Aberrations – Surface Contributions 1u&}Lq(
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs -QL_a8NL
24.10 Stop Shift Equations DfP4 `
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces h#9X0u7j
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) oLEqy
w,dDA2,
3z9}cOFq]z
Glossary {-IH?!&v
Reference Xc;W9e(U
Index