"Modern Lens Design" 2nd Edition by Warren J. Smith #y:,owo3I
H$o=kQN
Contents of Modern Lens Design 2nd Edition QaYUcma~n
*c1)x
1 Introduction &3t[p=
1.1 Lens Design Books ,9@JBV%_
1.2 Reference Material A;\1`_i0
1.3 Specifications 0/@ ^He8l
1.4 Lens Design |1[3RnGS
1.5 Lens Design Program Features ]/klKqz
1.6 About This Book eKw!%97>
wTw)GV4
2 Automatic Lens Design *eLKD_D`!C
2.2 The Merit Function HZDeQx`*s
2.3 Local Minima Ub_!~tb}?
2.4 The Landscape Lens j[e<CGZ
2.5 Types of Merit Function ! O~:
2.6 Stagnation Z|k>)pv@
2.7 Generalized Simulated Annealing uz%<K(:Ov
2.8 Considerations about Variables for Optimization N">4I)
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems lNwqWOWy
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits X{YY)}^
2.11 Spectral Weighting *@1(!A
2.12 How to Get Started $2gX!)
4
[K"e{W3
3 Improving a Design v%2 @M
3.1 Lens Design Tip Sheet: Standard Improvement Techniques E@(nKe&6T_
3.2 Glass Changes ( Index and V Values ) ?Xq"Q^o4#e
3.3 Splitting Elements xxS>O%
3.4 Separating a Cemented Doublet CNkI9>L=W`
3.5 Compounding an Element Vhi4_~W3j]
3.6 Vignetting and Its Uses "AcC\iq
3.7 Eliminating a Weak Element; the Concentric Problem
Q%*987i
3.8 Balancing Aberrations )oU%++cdo
3.9 The Symmetrical Principle I)YUGA5
3.10 Aspheric Surfaces E'ay
@YAp
)d$FFTH
4 Evaluation: How Good is This Design \a7caT{
4.1 The Uses of a Preliminary Evaluation TEN~3 Ef#
4.2 OPD versus Measures of Performance Dm+[cA"I
4.3 Geometric Blur Spot Size versus Certain Aberrations !CGpE=V
4.4 Interpreting MTF - The Modulation Transfer Function A6Vb'Gqv{
4.5 Fabrication Considerations FBP'AL|
km,I75o.
5 Lens Design Data p`I[3/$3
5.1 About the Sample Lens Designs V=cJdF
5.2 Lens Prescriptions, Drawings, and Aberration Plots uK;&L?WB
5.3 Estimating the Potential of a Redesign 6a!b20IZh
5.4 Scaling a Desing, Its Aberrations, and Its MTF pg9feIW1
5.5 Notes on the Interpretation of Ray Intercept Plots L}M%z9K`h
5.6 Various Evaluation Plot 9
7U a,
L4t(Y7
6 Telescope Objective xMr=tU1C
6.1 The Thin Airspaced Doublet %5yP^BL0
6.2 Merit Function for a Telescope Objective s$D"
6.3 The Design of an f/7 Cemented Doublet Telescope Objective vi;yT.
6.4 Spherochromatism -%)S~R
6.5 Zonal Spherical Aberration zc.r&(d
6.6 Induced Aberrations lK%)a +2
6.7 Three-Element Objectives R}E$SmFg
6.8 Secondary Spectrum (Apochromatic Systems) _fM=J+
6.9 The Design of an f/7 Apochromatic Triplet >z|bQW#2
6.10 The Diffractive Surface in Lens Design Is[n7Q
6.11 A Final Note /)*si
eZdFfmYW^R
7 Eyepieces and Magnifiers m8,jV R
7.1 Eyepieces "%rzL.</
7.2 A Pair of Magnifier Designs V
M{Sng
7.3 The Simple, Classical Eyepieces 9
M90X8
7.4 Design Story of an Eyepiece for a 6*30 Binocular 6c[Slq!KA
7.5 Four-Element Eyepieces Q>g-xe 1
7.6 Five-Element Eyepieces U9Gg#M4tY
7.7 Very High Index Eyepiece/Magnifier +|6E~#zklY
7.8 Six- and Seven-Element Eyepieces JE_GWgwdv
m}32ovpw
8 Cooke Triplet Anastigmats u$rSM0CJ
8.1 Airspaced Triplet Anastigmats ">v-CSHY
8.2 Glass Choice cMoBYk
8.3 Vertex Length and Residual Aberrations [5;_XMj%
8.4 Other Design Considerations Aj{G=AT
8.5 A Plastic, Aspheric Triplet Camera Lens ?Ll1B3f
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 4Dw|
I${O
8.7 Possible Improvement to Our “Basic” Triplet ^5q}M'
8.7 The Rear Earth (Lanthanum) Glasses 5;CqGzgoP
8.9 Aspherizing the Surfaces ZfU &X{
8.10 Increasing the Element Thickness ?.g="{5X
jP31K{G?
9 Split Triplets T?KM}<$(O
%4x,^ K]
10 The Tessar, Heliar, and Other Compounded Triplets 7?]wAH89
10.1 The Classic Tessar 4bq+(CI6
10.2 The Heliar/Pentac tpQ8
m(
10.3 The Portrait Lens and the Enlarger Lens ^0(`:*
10.4 Other Compounded Triplets ?8ady%
.ls
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar )&[Zw{6P
"Z#MR`;&29
11 Double-Meniscus Anastigmats $]~|W3\G
11.1 Meniscus Components LM*m>n*
11.2 The Hypergon, Totogon, and Metrogon c8oE,-~
11.3 A Two Element Aspheric Thick Meniscus Camera Lens A"wso[{
11.4 Protar, Dagor, and Convertible Lenses A",Xn/d
11.5 The Split Dagor !|-:"hE1h
11.6 The Dogmar yHs'E4V`$
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 1>)uI@?Rb
&GaI
12 The Biotar or Double-Gauss Lens kPYQcOK8
12.1 The Basic Six-Element Version ',s{N9
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens J@RV ^2
12.3 The Seven-Element Biotar - Split-Rear Singlet ^)1!TewCY
12.4 The Seven-Element Biotar - Broken Contact Front Doublet oR}'I
12.5 The Seven-Element Biotar - One Compounded Outer Element ]8|peo{
12.6 The Eight-Element Biotar ,A9{x\1!
12.7 A “Doubled Double-Gauss” Relay e^h4cC\^
kj@m5`G
13 Telephoto Lenses +K61-Div
13.1 The Basic Telephoto /jN&VpDG
13.2 Close-up or Macro Lenses v;:. k,E0
13.3 Telephoto Designs Bw4PxJs-
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ,%]xT>kH
Z`yW2ON$'
;|.IUXEgcF
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses @\Yu?_a
14.1 The Reverse Telephoto Principle r(Y@;
14.2 The Basic Retrofocus Lens y2@8?
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses +f\r?8s
2KQpmNN
15 Wide Angle Lenses with Negative Outer Lenses _j?/O)M
c
aZL
FsSY
16 The Petzval Lens; Head-up Display Lenses c59l/qoz
16.1 The Petzval Portrait Lens p}
i5z_tS
16.2 The Petzval Projection Lens !po29w:S
16.3 The Petzval with a Field Flattener )5l9!1j
16.4 Very Height Speed Petzval Lenses NplkhgSj
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems S*a_
K2ry@haN
17 Microscope Objectives pd oCV
17.1 General Considerations 8EAkM*D w
17.2 Classic Objective Design Forms; The Aplanatic Front ym6gj#2m
17.3 Flat-Field Objectives H:`[$
^
17.4 Reflecting Objectives vDVE#Nm_
17.5 The Microscope Objective Designs c{cJ>d 0
Ng1uJa[k!d
18 Mirror and Catadioptric Systems y0cB@pWp
18.1 The Good and Bad Points of Mirrors 84YZT+TEN
18.2 The Classic Two-Mirror Systems -{a&Zkz>V
18.3 Catadioptric Systems <rFKJ^ B
18.4 Aspheric Correctors and Schmidt Systems 3&7$N#v
18.5 Confocal Paraboloids P:2 0i*QU
18.6 Unobscured Systems a[Oi
18.7 Design of a Schmidt-Cassegrain “from Scratch” C]D voJmBs
2z[A&s_
19 Infrared and Ultraviolet Systems Auf2JH~
19.1 Infrared Optics s(M8 Y
19.2 IR Objective Lenses \!,qXfTMB
19.3 IR Telescope y
w>T1
19.4 Laser Beam Expanders @M ]7',2"
19,5 Ultraviolet Systems tJ@5E^'4
19.6 Microlithographic Lenses K;#9:
Z^+
w|WehNGr
20 Zoom Lenses -<.b3M h
20.1 Zoom Lenses J;cTEB
20.2 Zoom Lenses for Point and Shoot Cameras 1U;p+k5c
20.3 A 20X Video Zoom Lens
{;XO '
20.4 A Zoom Scanner Lens m\?H
<o0
20.5 A Possible Zoom Lens Design Procedure Irnfr\l.
[G[|auKF
21 Projection TV Lenses and Macro Lenses KsBi<wY
21.1 Projection TV Lenses _ya_Jf*
21.2 Macro Lenses J\x.:=V
=)9@rV&~
22 Scanner/ , Laser Disk and Collimator Lenses q/HwcX+[b
22.1 Monochromatic Systems 8m;tgMFO
22.2 Scanner Lenses $E]WU?U
22.3 Laser Disk, Focusing, and Collimator Lenses %{ToWLb{I
298@&_
23 Tolerance Budgeting ]M5w!O!
23.1 The Tolerance Budget Wa+q[E
23.2 Additive Tolerances M;K%=l$NG
23.3 Establishing the Tolerance Budget GV T[)jS
]EZiPW-uy
24 Formulary m'P,:S)=
24.1 Sign Conventions, Symbols, and Definitions +>wBGVvS
24.2 The Cardinal Points
dr iw\
24.3 Image Equations yxz"9PE/P
24.4 Paraxial Ray Tracing (Surface by Surface) 8RJ^e[?o(
24.5 Invariants 'lD"{^
24.6 Paraxial Ray Tracing (Component by Component) :gJ?3LwTf
24.7 Two-Componenet Relationships w
`0m[*
24.8 Third-Order Aberrations – Surface Contributions HRxA0y=
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs yq2pg8%
24.10 Stop Shift Equations ~t-!{F
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces J"Z=`I)KON
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) lboi\GP|
@?r[
$Ea1M
f Nnemn@>
Glossary ht1d[
Reference HM(S}>
Index