"Modern Lens Design" 2nd Edition by Warren J. Smith V Y7[)
+V{kb<P
Contents of Modern Lens Design 2nd Edition !Dn,^
+nFu|qM}
1 Introduction |v3T!
1.1 Lens Design Books '-Vt|O_Q
1.2 Reference Material m#|
9hMu
1.3 Specifications Sw ig;`
1.4 Lens Design -cAo@}v
1.5 Lens Design Program Features tEvut=k'
1.6 About This Book V17%=bCZ5[
L>Fa^jq5
2 Automatic Lens Design nAsh:6${
2.2 The Merit Function n FHUy9q
2.3 Local Minima :(P9mt
2.4 The Landscape Lens ,is3&9
2.5 Types of Merit Function 6d<r= C=
2.6 Stagnation #A JDWelD
2.7 Generalized Simulated Annealing lZ]ZDb?P
2.8 Considerations about Variables for Optimization 2DrP"iGq5
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems .ypL=~Rp
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits yEqps3%
2.11 Spectral Weighting ?]_$Dcmx
2.12 How to Get Started wd8l$*F*
-b9\=U[
3 Improving a Design *v !9MU9[(
3.1 Lens Design Tip Sheet: Standard Improvement Techniques rr],DGg+B]
3.2 Glass Changes ( Index and V Values ) c tZ uA+
3.3 Splitting Elements 61C7.EZZ;
3.4 Separating a Cemented Doublet PUMXOTu]
3.5 Compounding an Element k8&;lgO'
3.6 Vignetting and Its Uses =(j1rW!
3.7 Eliminating a Weak Element; the Concentric Problem P64PPbP
3.8 Balancing Aberrations ]8_NZHld
3.9 The Symmetrical Principle Tztu}t]N
3.10 Aspheric Surfaces _{YWXRC#
l*(8i ^
4 Evaluation: How Good is This Design @zW]2 c
4.1 The Uses of a Preliminary Evaluation N2^=E1|_
4.2 OPD versus Measures of Performance 'T*&'RQr
4.3 Geometric Blur Spot Size versus Certain Aberrations _7Ju
4.4 Interpreting MTF - The Modulation Transfer Function /|6N*>l)y
4.5 Fabrication Considerations g[' ^L+hd
5}l[>lF
5 Lens Design Data 24 ' J
5.1 About the Sample Lens Designs 6,8h]?u.
5.2 Lens Prescriptions, Drawings, and Aberration Plots ~D j8z+^
5.3 Estimating the Potential of a Redesign Cn34b_Sbd
5.4 Scaling a Desing, Its Aberrations, and Its MTF \h/H#jZJ
5.5 Notes on the Interpretation of Ray Intercept Plots cKca;SNql1
5.6 Various Evaluation Plot S%;O+eFYb
V(I8=rVH
6 Telescope Objective ,aZ[R27rpL
6.1 The Thin Airspaced Doublet {L{o]Ii?g
6.2 Merit Function for a Telescope Objective nV|EQs4(
6.3 The Design of an f/7 Cemented Doublet Telescope Objective @1roe
G
6.4 Spherochromatism x)DMPVB<
6.5 Zonal Spherical Aberration nfbR
P t
6.6 Induced Aberrations J/y83@
6.7 Three-Element Objectives Ko<:Z)PS
6.8 Secondary Spectrum (Apochromatic Systems) b|:YIXml
6.9 The Design of an f/7 Apochromatic Triplet UERLtSQ
6.10 The Diffractive Surface in Lens Design ~^:A{/
6.11 A Final Note gD@){Ip
cA?W7D
7 Eyepieces and Magnifiers lfow1WRF
7.1 Eyepieces y'.p&QH'`
7.2 A Pair of Magnifier Designs Woym/[i
7.3 The Simple, Classical Eyepieces PO:{t
7.4 Design Story of an Eyepiece for a 6*30 Binocular A:%`wX}
7.5 Four-Element Eyepieces 03X1d-
7.6 Five-Element Eyepieces tCH!my_
7.7 Very High Index Eyepiece/Magnifier F0TB<1
7.8 Six- and Seven-Element Eyepieces ~Fcm[eoC
~!d\^Z^i
8 Cooke Triplet Anastigmats +Mb.:_7'
8.1 Airspaced Triplet Anastigmats l_d5oAh
8.2 Glass Choice kS);xA8s]
8.3 Vertex Length and Residual Aberrations K\Wkoi5
8.4 Other Design Considerations "%w u2%i
8.5 A Plastic, Aspheric Triplet Camera Lens 0Th&iA4
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet Se}c[|8
8.7 Possible Improvement to Our “Basic” Triplet c7k~S-nU
8.7 The Rear Earth (Lanthanum) Glasses &DX! f
8.9 Aspherizing the Surfaces )mT<MkP
8.10 Increasing the Element Thickness rglXs
.uZ3odMlx
9 Split Triplets }o(-=lF
r#p9x[f<Y
10 The Tessar, Heliar, and Other Compounded Triplets EW OVx*l
10.1 The Classic Tessar `*R:gE=
10.2 The Heliar/Pentac Z@S3ZGe
10.3 The Portrait Lens and the Enlarger Lens *i%.;Z"
10.4 Other Compounded Triplets Xc-'Y"}|`t
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar kgP0x-Ap
e X|m
11 Double-Meniscus Anastigmats *])
`z8Ox
11.1 Meniscus Components K+3=tk]W9u
11.2 The Hypergon, Totogon, and Metrogon G5 WVr$
11.3 A Two Element Aspheric Thick Meniscus Camera Lens EV%gF
11.4 Protar, Dagor, and Convertible Lenses hL{KRRf>
11.5 The Split Dagor N~)_DjQP5
11.6 The Dogmar .Yn_*L+4*
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens /(*q}R3Kfo
",; H`V
12 The Biotar or Double-Gauss Lens C_JNX9wv
12.1 The Basic Six-Element Version '-~~-}= sJ
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens k?^z;Tlvw
12.3 The Seven-Element Biotar - Split-Rear Singlet (hbyEQhF
12.4 The Seven-Element Biotar - Broken Contact Front Doublet }Zn}
12.5 The Seven-Element Biotar - One Compounded Outer Element ]{@-HTt
12.6 The Eight-Element Biotar $<EM+oJ|ER
12.7 A “Doubled Double-Gauss” Relay Z@!+v19^
pl?`8@dI
13 Telephoto Lenses hHnYtq
13.1 The Basic Telephoto h*](a_0
13.2 Close-up or Macro Lenses 5U$0F$BBp
13.3 Telephoto Designs +[mk<pQ
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch m;QMQeGz
eD6fpe\(
] (8[}CeL
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses z<?)Rq"
14.1 The Reverse Telephoto Principle <0!):zraS
14.2 The Basic Retrofocus Lens 2FJ*f/
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses x s|FE3:a
NC(~l
15 Wide Angle Lenses with Negative Outer Lenses aqk!T%fg
1mG-}
16 The Petzval Lens; Head-up Display Lenses _-g&PXH
16.1 The Petzval Portrait Lens eeB{c.#
16.2 The Petzval Projection Lens ZUd-<y
16.3 The Petzval with a Field Flattener }o`76rDN
16.4 Very Height Speed Petzval Lenses Rima;9.Y0
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 1=V-V<
~Mxvq9vaD
17 Microscope Objectives wbl&
17.1 General Considerations @K-">f
17.2 Classic Objective Design Forms; The Aplanatic Front q(84+{>B
17.3 Flat-Field Objectives t b}V5VH
17.4 Reflecting Objectives "4{r6[dn
17.5 The Microscope Objective Designs f.)O2=
&tj!*k'
18 Mirror and Catadioptric Systems k9L;!TH~1K
18.1 The Good and Bad Points of Mirrors ]c'A%:f<
18.2 The Classic Two-Mirror Systems
ew4U)2J+
18.3 Catadioptric Systems H4+i.*T#
18.4 Aspheric Correctors and Schmidt Systems 6=Otq=WH
18.5 Confocal Paraboloids S)@j6(HC4
18.6 Unobscured Systems oOFVb5qoFU
18.7 Design of a Schmidt-Cassegrain “from Scratch” 4o[{>gW
H qx-;F~0
19 Infrared and Ultraviolet Systems F:S}w
19.1 Infrared Optics Z7Hbj!d/Sz
19.2 IR Objective Lenses +
{'.7#
19.3 IR Telescope >^3i|PB
19.4 Laser Beam Expanders VI*$em O0
19,5 Ultraviolet Systems qIT@g"%}t
19.6 Microlithographic Lenses j0q&&9/Jj
X^j fuA
20 Zoom Lenses 5v*\Zr5ha
20.1 Zoom Lenses h/Y'<:
20.2 Zoom Lenses for Point and Shoot Cameras G18b$z
20.3 A 20X Video Zoom Lens c7H^$_^ =
20.4 A Zoom Scanner Lens SOIN']L|V[
20.5 A Possible Zoom Lens Design Procedure N8df8=.kw
493*{
21 Projection TV Lenses and Macro Lenses 4 #Jg9o
21.1 Projection TV Lenses r5^eNg k
21.2 Macro Lenses pd$[8Rmj_
J#83 0r(-
22 Scanner/ , Laser Disk and Collimator Lenses xyXa .
22.1 Monochromatic Systems x
kD6Iw
22.2 Scanner Lenses ~a2}(]
22.3 Laser Disk, Focusing, and Collimator Lenses ftSW
(og
#GFr`o0$^
23 Tolerance Budgeting iWR)ke
23.1 The Tolerance Budget #KvlYZ+1
23.2 Additive Tolerances 'V>-QD%1
23.3 Establishing the Tolerance Budget uPvEwq*
C
)t%b838l%
24 Formulary Dw"\/p:-3
24.1 Sign Conventions, Symbols, and Definitions UPGtj"2v-
24.2 The Cardinal Points );YDtGip J
24.3 Image Equations #5uOx(>
24.4 Paraxial Ray Tracing (Surface by Surface) #<xm.
24.5 Invariants k;Y5BB
24.6 Paraxial Ray Tracing (Component by Component) m]&SN z=
24.7 Two-Componenet Relationships
v"0J&7!J
24.8 Third-Order Aberrations – Surface Contributions 3OB"#Ap8<
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 4skD(au8
24.10 Stop Shift Equations s>c=c-SP.
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces _Z\G5x
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) P$,Ke<
vP,n(reM
0n'_{\yz
Glossary ;9#KeA _
Reference 0"SU_jQzv
Index