"Modern Lens Design" 2nd Edition by Warren J. Smith 7eZ,;
x
l? 7D0
Contents of Modern Lens Design 2nd Edition HjL+Wg
])vM# f
1 Introduction z!?xz
1.1 Lens Design Books !.kj-==s{7
1.2 Reference Material 5Vf#(r f
1.3 Specifications 7!z0)Ai_>=
1.4 Lens Design td{$c6
1.5 Lens Design Program Features v-g2k_o|
1.6 About This Book _18) XR
[N.4i"
Cd
2 Automatic Lens Design rr9N(AoxW
2.2 The Merit Function C+jlIT+
2.3 Local Minima _@SC R%
2.4 The Landscape Lens s}X2*o`,
2.5 Types of Merit Function Me2%X>;
2.6 Stagnation 7'CdDB6&.
2.7 Generalized Simulated Annealing AvH^9zEE(
2.8 Considerations about Variables for Optimization 4Bs '5@
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems j%Usui<DL
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits PkMN@JS
2.11 Spectral Weighting o yK'h9Wt1
2.12 How to Get Started [Vc8j&:L
Qne@Vf kA
3 Improving a Design 7S}NV7
3.1 Lens Design Tip Sheet: Standard Improvement Techniques q\/ph(HF
3.2 Glass Changes ( Index and V Values ) 4Zo.c*
BZ
3.3 Splitting Elements iTwb#Q=
3.4 Separating a Cemented Doublet PsaKzAg?
3.5 Compounding an Element ,F!zZNW9
3.6 Vignetting and Its Uses }k~ih?E^s
3.7 Eliminating a Weak Element; the Concentric Problem )pbsvR_
3.8 Balancing Aberrations f;x0Ho5C2
3.9 The Symmetrical Principle lvY[E9I0
3.10 Aspheric Surfaces X0.k Q
@j=:V!g2O
4 Evaluation: How Good is This Design r roI
4.1 The Uses of a Preliminary Evaluation gE\&[;)DB
4.2 OPD versus Measures of Performance 9$$dSN\&
4.3 Geometric Blur Spot Size versus Certain Aberrations h'jc4mu0
4.4 Interpreting MTF - The Modulation Transfer Function n
9PYZxy
4.5 Fabrication Considerations QV)>+6\
_Dr9 w&;<
5 Lens Design Data u0zF::
5.1 About the Sample Lens Designs nm Y_ )s
5.2 Lens Prescriptions, Drawings, and Aberration Plots C3)*Mn3%P
5.3 Estimating the Potential of a Redesign .o8Sy2PaV
5.4 Scaling a Desing, Its Aberrations, and Its MTF JuQwZ]3ed
5.5 Notes on the Interpretation of Ray Intercept Plots ]l>LU2 sx
5.6 Various Evaluation Plot WPI<SsLd
SMoJKr(:w#
6 Telescope Objective ,sI<AFI
6.1 The Thin Airspaced Doublet xsu9DzPf&{
6.2 Merit Function for a Telescope Objective )0+6^[Tqq
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ^F,sV*
6.4 Spherochromatism _t&`T
6.5 Zonal Spherical Aberration /oOZ>B%1s
6.6 Induced Aberrations ORuC("
6.7 Three-Element Objectives /s*.:cdH
6.8 Secondary Spectrum (Apochromatic Systems) u}3D'h
6.9 The Design of an f/7 Apochromatic Triplet ZP{<f~;
6.10 The Diffractive Surface in Lens Design t.y-b`v
6.11 A Final Note v;soJlxF~
jaw&[f
7
7 Eyepieces and Magnifiers ~=va<%{
U
7.1 Eyepieces >Q$ph=
7.2 A Pair of Magnifier Designs h4Wt
oE>i
7.3 The Simple, Classical Eyepieces o1`\*]A7J
7.4 Design Story of an Eyepiece for a 6*30 Binocular plL|Ubn
7.5 Four-Element Eyepieces &^2SdF
7.6 Five-Element Eyepieces y+3+iT@i
7.7 Very High Index Eyepiece/Magnifier % IHIXncv[
7.8 Six- and Seven-Element Eyepieces Y<L35
?
e, N}z
8 Cooke Triplet Anastigmats J2<kOXXJ9
8.1 Airspaced Triplet Anastigmats ]
# VHx
8.2 Glass Choice 8Cs;.>75[
8.3 Vertex Length and Residual Aberrations H-vHcqFx3
8.4 Other Design Considerations u
3^pQ6Q
8.5 A Plastic, Aspheric Triplet Camera Lens m _cRK}>
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ,qx^D
8.7 Possible Improvement to Our “Basic” Triplet 8EI9&L>
8.7 The Rear Earth (Lanthanum) Glasses m9vX8;.
8.9 Aspherizing the Surfaces Jsl2RdI
8.10 Increasing the Element Thickness 85YUqVi9
wA\5-C7j
9 Split Triplets |lt]9>|
q3AqU?f
10 The Tessar, Heliar, and Other Compounded Triplets 6<EGH*GQ$
10.1 The Classic Tessar h5SJVa
10.2 The Heliar/Pentac 7:,f|>
10.3 The Portrait Lens and the Enlarger Lens D"J',YN$
10.4 Other Compounded Triplets +$|fUn{
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar AHRJ7l;a
M@#T`aS
11 Double-Meniscus Anastigmats h);^4cU
11.1 Meniscus Components 2]1u0-M5L
11.2 The Hypergon, Totogon, and Metrogon !!A0K"h
11.3 A Two Element Aspheric Thick Meniscus Camera Lens w9{C"K?u=
11.4 Protar, Dagor, and Convertible Lenses =*&[K^
11.5 The Split Dagor o:D,,MkSw
11.6 The Dogmar p}^5ru
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens f. "\~
E7t;p)x
12 The Biotar or Double-Gauss Lens yL*]_
12.1 The Basic Six-Element Version <XIIT-b[
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ,Klv[_x7
12.3 The Seven-Element Biotar - Split-Rear Singlet |RFBhB/u
12.4 The Seven-Element Biotar - Broken Contact Front Doublet MC* Hl`C
12.5 The Seven-Element Biotar - One Compounded Outer Element 6|zhqb|s
12.6 The Eight-Element Biotar 4b:|>Z-
12.7 A “Doubled Double-Gauss” Relay )P$|9<_q7x
z$e6T&u5B
13 Telephoto Lenses 0V4B Q:v
13.1 The Basic Telephoto ikW[lefTq
13.2 Close-up or Macro Lenses .E<nQWz8
13.3 Telephoto Designs z Fo11;*D
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch vd{QFJ
Ut;`6t
Zz0e4C
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses BH">#&j[
14.1 The Reverse Telephoto Principle g w"
\pD
14.2 The Basic Retrofocus Lens GC{M"q|_
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Ot2o=^Ng
8NWo)y49H
15 Wide Angle Lenses with Negative Outer Lenses |^6{3a
_!nsEG
VV
16 The Petzval Lens; Head-up Display Lenses s
V_(9@b
16.1 The Petzval Portrait Lens z3Q&O$5\
16.2 The Petzval Projection Lens wT4@X[5$
16.3 The Petzval with a Field Flattener Fl-\{vOn
16.4 Very Height Speed Petzval Lenses $KK~KEZ2
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems O`B,mgT(
{_QdB;VwH
17 Microscope Objectives .UG`pRC
17.1 General Considerations -QrC>3xZR
17.2 Classic Objective Design Forms; The Aplanatic Front p49]{2GXb
17.3 Flat-Field Objectives QO2cTk
m
17.4 Reflecting Objectives [={mCGU
17.5 The Microscope Objective Designs xT%`"eM}
x4oWZEd
18 Mirror and Catadioptric Systems l3>S{
18.1 The Good and Bad Points of Mirrors JZ:@iI5>+
18.2 The Classic Two-Mirror Systems >]\I:T
18.3 Catadioptric Systems BAf$tyh
18.4 Aspheric Correctors and Schmidt Systems XBQt:7[<
18.5 Confocal Paraboloids _)M,p@!?=h
18.6 Unobscured Systems =dmr,WE
18.7 Design of a Schmidt-Cassegrain “from Scratch” c$O8Rhx
2
T!Tiu
19 Infrared and Ultraviolet Systems gc9R;B1
19.1 Infrared Optics j/FLEsU!R
19.2 IR Objective Lenses <$A,Ex94
19.3 IR Telescope FSIiw#xzH
19.4 Laser Beam Expanders ghk=` !yKw
19,5 Ultraviolet Systems KK){/I=z
19.6 Microlithographic Lenses cHs3:F~~
Ld4U
20 Zoom Lenses i%hCV o
20.1 Zoom Lenses 0l!#u`cCI
20.2 Zoom Lenses for Point and Shoot Cameras \N,ox(f?gW
20.3 A 20X Video Zoom Lens l~c[} wv
20.4 A Zoom Scanner Lens N3%X>*'
20.5 A Possible Zoom Lens Design Procedure &X=7b@r
`o[l%I\Q
21 Projection TV Lenses and Macro Lenses Zf'*pp T&q
21.1 Projection TV Lenses Yj%]|E-
21.2 Macro Lenses jD:
N)((
#b/qR^2qW
22 Scanner/ , Laser Disk and Collimator Lenses ,T$ts
22.1 Monochromatic Systems {& o^p!
22.2 Scanner Lenses =[6^NR(
22.3 Laser Disk, Focusing, and Collimator Lenses {]0e=#hw
X8nos
23 Tolerance Budgeting ;]{ee?Q^ld
23.1 The Tolerance Budget qt/K$'
23.2 Additive Tolerances p0+^wXi)
23.3 Establishing the Tolerance Budget BR,-:?z
Harg<l
24 Formulary IG781:,/
24.1 Sign Conventions, Symbols, and Definitions 2jsbg{QS#_
24.2 The Cardinal Points j(;^XO Y#
24.3 Image Equations #36QO
24.4 Paraxial Ray Tracing (Surface by Surface) )t6]F6!_
24.5 Invariants h>N}M}8
24.6 Paraxial Ray Tracing (Component by Component) );5o13h2
24.7 Two-Componenet Relationships 'xwCeZcg
24.8 Third-Order Aberrations – Surface Contributions 64s;EC
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs &m5zd$6
24.10 Stop Shift Equations ([>ecS@eO
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces Vwkvu&4
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) TdtV (
La4S/.
gFDnt
Glossary N]<(cG&p
Reference S@qp_!
Index