"Modern Lens Design" 2nd Edition by Warren J. Smith )cJ>&g4]
B}d&tH2^s
Contents of Modern Lens Design 2nd Edition !CYC7HeF
k|)fl l
1 Introduction z lr!
1.1 Lens Design Books *XTd9E^tXq
1.2 Reference Material R (~wSL*R>
1.3 Specifications ^OY]Y+S`Ox
1.4 Lens Design 2cYBm^o|x
1.5 Lens Design Program Features >u$8Z
1.6 About This Book 8v;^jo>ug
yQ2=d5'V`
2 Automatic Lens Design ~w>h#{RB
2.2 The Merit Function 2 kDsIEA
2.3 Local Minima J3 _aHI
2.4 The Landscape Lens r9@=d
2.5 Types of Merit Function W*C~Xba<
2.6 Stagnation gN=.}$Kfu
2.7 Generalized Simulated Annealing Ym6d'd<9(
2.8 Considerations about Variables for Optimization {zFME41>g
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems "@UQSf,
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 3%Y:+%VE
2.11 Spectral Weighting &$
h~Q
2.12 How to Get Started Q7865
<>3)S`C`p
3 Improving a Design glMHT,
3.1 Lens Design Tip Sheet: Standard Improvement Techniques $,4h\>1WP
3.2 Glass Changes ( Index and V Values ) TQ4@|S:OF
3.3 Splitting Elements (9'^T.J
3.4 Separating a Cemented Doublet o
<q*3L5
3.5 Compounding an Element sAkr-x?+M
3.6 Vignetting and Its Uses !ZBtXt#P
3.7 Eliminating a Weak Element; the Concentric Problem $`F9e5}G
3.8 Balancing Aberrations %T/@/,7h
3.9 The Symmetrical Principle bx3Q$|M?
3.10 Aspheric Surfaces USBQEt
P=94
4 Evaluation: How Good is This Design BR2Gb~#T
4.1 The Uses of a Preliminary Evaluation i5 rkP`)j
4.2 OPD versus Measures of Performance \/NF??k,jk
4.3 Geometric Blur Spot Size versus Certain Aberrations T D_@0Rd
4.4 Interpreting MTF - The Modulation Transfer Function Q7s@,c!m_
4.5 Fabrication Considerations js_`L#t
[oLV,O|s|j
5 Lens Design Data MYAt4cHc2
5.1 About the Sample Lens Designs S0,\{j
5.2 Lens Prescriptions, Drawings, and Aberration Plots
qyH-Z@
5.3 Estimating the Potential of a Redesign YFO{i-*q
5.4 Scaling a Desing, Its Aberrations, and Its MTF XIW0Z C
5.5 Notes on the Interpretation of Ray Intercept Plots .hl_zc#
5.6 Various Evaluation Plot |mb2<! ag{
P\jGySj
6 Telescope Objective 3A#Tn7
6.1 The Thin Airspaced Doublet d?2V2`6
6.2 Merit Function for a Telescope Objective JWn26,
6.3 The Design of an f/7 Cemented Doublet Telescope Objective I%[e6qX@
6.4 Spherochromatism qlO}=b/
6.5 Zonal Spherical Aberration un{ZysmtB6
6.6 Induced Aberrations 4%(Ji
6.7 Three-Element Objectives [?!I*=*b
6.8 Secondary Spectrum (Apochromatic Systems) 1+x"
5<(W
6.9 The Design of an f/7 Apochromatic Triplet q-F
K=r 5
6.10 The Diffractive Surface in Lens Design pO`KtagL
6.11 A Final Note 8|a./%gixs
(`tRJWbdz
7 Eyepieces and Magnifiers OK[J
h
7.1 Eyepieces
cw Obq\
7.2 A Pair of Magnifier Designs U&5*>fd=
7.3 The Simple, Classical Eyepieces .G0 N+)
7.4 Design Story of an Eyepiece for a 6*30 Binocular 5~*)3z^V
7.5 Four-Element Eyepieces /(N/DMl[
7.6 Five-Element Eyepieces Wlj&_~
7.7 Very High Index Eyepiece/Magnifier / ;]5X
7.8 Six- and Seven-Element Eyepieces %By Pwu:f
xA] L0h]
8 Cooke Triplet Anastigmats ,WT>"9+
8.1 Airspaced Triplet Anastigmats h!EA;2yGKa
8.2 Glass Choice j|eA*UE
8.3 Vertex Length and Residual Aberrations OZ[ YB
8.4 Other Design Considerations ',+yD9 @
8.5 A Plastic, Aspheric Triplet Camera Lens /R)wM#&
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ^kez]>
8.7 Possible Improvement to Our “Basic” Triplet FfoOJzf~o
8.7 The Rear Earth (Lanthanum) Glasses jwZ,_CK
8.9 Aspherizing the Surfaces \/a6h
8.10 Increasing the Element Thickness .fA*WQ!lb
)-C3z
9 Split Triplets xs$$fPAQ
3*b5V<}'|
10 The Tessar, Heliar, and Other Compounded Triplets bF'rK'',
10.1 The Classic Tessar %`Re{%1;
10.2 The Heliar/Pentac {28|LwmL
10.3 The Portrait Lens and the Enlarger Lens 4=zs&
10.4 Other Compounded Triplets zkQ[<
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar 7>vm?a^D2&
8%?y)K^
D
11 Double-Meniscus Anastigmats {@Mr7*u
11.1 Meniscus Components [Kgb#L'{
11.2 The Hypergon, Totogon, and Metrogon uV/5f#)
11.3 A Two Element Aspheric Thick Meniscus Camera Lens &p0e)o~Ux
11.4 Protar, Dagor, and Convertible Lenses UO/sv2CN
11.5 The Split Dagor VtreOJ+
11.6 The Dogmar je4l3Hl
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens .g*j]!_]
PnlI {d
12 The Biotar or Double-Gauss Lens Gr"CHz/
12.1 The Basic Six-Element Version D #ddx
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens \mqx '
12.3 The Seven-Element Biotar - Split-Rear Singlet }aCa2%
12.4 The Seven-Element Biotar - Broken Contact Front Doublet 7R+(3NU1A
12.5 The Seven-Element Biotar - One Compounded Outer Element -%K!Ra\W
12.6 The Eight-Element Biotar gv#\}/->4
12.7 A “Doubled Double-Gauss” Relay sV^:u^
/zn=AAYb
13 Telephoto Lenses d:H'[l.F%
13.1 The Basic Telephoto JzHG5nmB
13.2 Close-up or Macro Lenses \bA Yic
13.3 Telephoto Designs `?Rq44=
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch (~T*yH ~
t^t% >9o
6%D9;-N)
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses niVR!l
14.1 The Reverse Telephoto Principle W:w~ M'o
14.2 The Basic Retrofocus Lens aQkOQy
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses B@,9Cx564
y4V:)@P
15 Wide Angle Lenses with Negative Outer Lenses l6viP}R
Mf}M/Fh
16 The Petzval Lens; Head-up Display Lenses G=dzP}B'WA
16.1 The Petzval Portrait Lens 2|1fb-AR
16.2 The Petzval Projection Lens ~6vz2DuB=
16.3 The Petzval with a Field Flattener M>Q]{/V7T
16.4 Very Height Speed Petzval Lenses ==[,;g
x
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems uOxHa>h
!_S>ER
17 Microscope Objectives D$>_W ,*V
17.1 General Considerations 3Ob.OwA
17.2 Classic Objective Design Forms; The Aplanatic Front sdu?#O+c1
17.3 Flat-Field Objectives Fsx?(?tCMo
17.4 Reflecting Objectives u8e_Lqx?
17.5 The Microscope Objective Designs 6CJMQi,kn
! -gU~0
18 Mirror and Catadioptric Systems n,la<N]
18.1 The Good and Bad Points of Mirrors w =^.ICyb@
18.2 The Classic Two-Mirror Systems 0lw>mxN
18.3 Catadioptric Systems gk ]QR.
18.4 Aspheric Correctors and Schmidt Systems g 7oY 1;
18.5 Confocal Paraboloids Onmmcem
18.6 Unobscured Systems 4s\spvJ
18.7 Design of a Schmidt-Cassegrain “from Scratch” h}bfZL
Cs $5Of(
19 Infrared and Ultraviolet Systems 8h)XULs2
19.1 Infrared Optics '\Xkvi
19.2 IR Objective Lenses (8 nv&|
19.3 IR Telescope BD g]M/{
19.4 Laser Beam Expanders ``o]i{x
19,5 Ultraviolet Systems v=`yfCX-qX
19.6 Microlithographic Lenses lQA5HzC\
I[Ra0Q>([k
20 Zoom Lenses 5&Oc`5QD
20.1 Zoom Lenses +A9~h/"kt
20.2 Zoom Lenses for Point and Shoot Cameras %pWn9
20.3 A 20X Video Zoom Lens AerU`^
20.4 A Zoom Scanner Lens %>_[b,
20.5 A Possible Zoom Lens Design Procedure f^c+M~\JKj
qA*~B'
21 Projection TV Lenses and Macro Lenses A_9WSXR
21.1 Projection TV Lenses sXKkZ+2q
21.2 Macro Lenses "TRS(d|3
@sXFu[!U
22 Scanner/ , Laser Disk and Collimator Lenses 8\"<t/_
W
22.1 Monochromatic Systems |diI(2w
22.2 Scanner Lenses L"_XWno
22.3 Laser Disk, Focusing, and Collimator Lenses =KRM`_QShg
7 WJ\nK
23 Tolerance Budgeting bMH~vR
23.1 The Tolerance Budget ZsGvv]P
23.2 Additive Tolerances @SQsEq+A?\
23.3 Establishing the Tolerance Budget 9>}&dQ8
K+g[E<x\=
24 Formulary )m%uSSx#
24.1 Sign Conventions, Symbols, and Definitions 3G})$y3m
24.2 The Cardinal Points sJHVnMA
24.3 Image Equations
J~~\0 u
24.4 Paraxial Ray Tracing (Surface by Surface) 'C+cQLig@
24.5 Invariants +ikSa8)*i
24.6 Paraxial Ray Tracing (Component by Component) ?HEqv$n
24.7 Two-Componenet Relationships $ {yct
24.8 Third-Order Aberrations – Surface Contributions fHt \KP
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs PK\Z Rl
24.10 Stop Shift Equations X1o",,N^M
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ;p`1Y<d-O
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) m*0YMS>Y |
dab]>% M
6F\ 6,E
Glossary PN*
.9;5Z
Reference &OR(]Wt0
Index