"Modern Lens Design" 2nd Edition by Warren J. Smith 1:I47/
y}NBJ
Contents of Modern Lens Design 2nd Edition 92}UP=RW!
1-.UkdZ}
1 Introduction !oTF2Q+C
1.1 Lens Design Books \IZfp=On
1.2 Reference Material :G#>):
1.3 Specifications Y|bCbaF
1.4 Lens Design +we3BE.
1.5 Lens Design Program Features B2UQO4[w
1.6 About This Book h#K863
ps:|YR
2 Automatic Lens Design 8+5-7)
2.2 The Merit Function cnh\K.*}_x
2.3 Local Minima $i@~$m7d-
2.4 The Landscape Lens E}S)uI,gn
2.5 Types of Merit Function Y
}*[Krw
2.6 Stagnation
xviz{M9g
2.7 Generalized Simulated Annealing tWkD@w`Lnn
2.8 Considerations about Variables for Optimization [ Fid
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems Gq4~9Tm)*
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits SWujj,-[
2.11 Spectral Weighting > <WR]`G
2.12 How to Get Started a%2r]:?^?
Fwn4c4-%
3 Improving a Design 0(fN
3.1 Lens Design Tip Sheet: Standard Improvement Techniques I13nmI\
3.2 Glass Changes ( Index and V Values ) "g7`Ytln
3.3 Splitting Elements ax7]>Z=%d"
3.4 Separating a Cemented Doublet ;Wjb}_V:_
3.5 Compounding an Element K9Dxb
3.6 Vignetting and Its Uses !@E=\Sm8EV
3.7 Eliminating a Weak Element; the Concentric Problem mgeNH~%m@*
3.8 Balancing Aberrations ~Ein)5
3.9 The Symmetrical Principle `PI,tmv!
3.10 Aspheric Surfaces ;kO
Op@e
D@T>z;
4 Evaluation: How Good is This Design M~Tq'>Fn
4.1 The Uses of a Preliminary Evaluation 8E`rs)A
4.2 OPD versus Measures of Performance Cg NfqT0
4.3 Geometric Blur Spot Size versus Certain Aberrations LO8V*H(
4.4 Interpreting MTF - The Modulation Transfer Function oy90|.]G
4.5 Fabrication Considerations M|e
Qds
l_JPkM(mJw
5 Lens Design Data /I~iUND"G
5.1 About the Sample Lens Designs )cc:Z7p
5.2 Lens Prescriptions, Drawings, and Aberration Plots l%h0x*?$
5.3 Estimating the Potential of a Redesign mq@2zE`.(
5.4 Scaling a Desing, Its Aberrations, and Its MTF 2T!pFcc
5.5 Notes on the Interpretation of Ray Intercept Plots o@[yF<
5.6 Various Evaluation Plot `A O_e4D0i
kDuN3
6 Telescope Objective mx s=<
6.1 The Thin Airspaced Doublet H:x=v4NgsU
6.2 Merit Function for a Telescope Objective IDbqhZp(
6.3 The Design of an f/7 Cemented Doublet Telescope Objective `"J=\3->
6.4 Spherochromatism MH|!tkW>:
6.5 Zonal Spherical Aberration w|?<;+
6.6 Induced Aberrations &d]%b`EXq
6.7 Three-Element Objectives B5"(NJ;
6.8 Secondary Spectrum (Apochromatic Systems) l0Wp%T
6.9 The Design of an f/7 Apochromatic Triplet }9[E+8L1
6.10 The Diffractive Surface in Lens Design 2<Lnfc<^k
6.11 A Final Note M{$EJS\d=
Jvt| q5
7 Eyepieces and Magnifiers ]v7f9MC'\
7.1 Eyepieces - 7)%J+5
7.2 A Pair of Magnifier Designs 0?525^
7.3 The Simple, Classical Eyepieces Y9fktg.
7.4 Design Story of an Eyepiece for a 6*30 Binocular ]c,ttS_
7.5 Four-Element Eyepieces L 1=HD
7.6 Five-Element Eyepieces CqQ>"Y
7.7 Very High Index Eyepiece/Magnifier .XR`iXY
7.8 Six- and Seven-Element Eyepieces #|76dU
4R-Y9:^t
8 Cooke Triplet Anastigmats e
W&;r&26
8.1 Airspaced Triplet Anastigmats B'\^[
8.2 Glass Choice 4PUSFZK?
8.3 Vertex Length and Residual Aberrations >$h *1/
8.4 Other Design Considerations Ld>y Fb(`
8.5 A Plastic, Aspheric Triplet Camera Lens :lQl;Q -e
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet .-t#wXEi
8.7 Possible Improvement to Our “Basic” Triplet iK{ a9pt
8.7 The Rear Earth (Lanthanum) Glasses -miWXEe@l
8.9 Aspherizing the Surfaces 7)sEW#d!
8.10 Increasing the Element Thickness "HTp1
Fl\X&6k
9 Split Triplets wb^Yg9
sev^
10 The Tessar, Heliar, and Other Compounded Triplets *'=JT#
10.1 The Classic Tessar cwiHHf>
10.2 The Heliar/Pentac c RBdIDIc
10.3 The Portrait Lens and the Enlarger Lens x]|8
10.4 Other Compounded Triplets p.,o@GcL~
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar y&T(^EA;
W,~s0a!
11 Double-Meniscus Anastigmats BH _y0[y
11.1 Meniscus Components 9{bG @g
11.2 The Hypergon, Totogon, and Metrogon K2PV^Y
11.3 A Two Element Aspheric Thick Meniscus Camera Lens yNVuSj
11.4 Protar, Dagor, and Convertible Lenses @cNBY7=
11.5 The Split Dagor :Z|lGH
=
11.6 The Dogmar }Th":sin},
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Zp~2WJQ
tpw0j
CVu
12 The Biotar or Double-Gauss Lens
5zXw0_
12.1 The Basic Six-Element Version kgfOH.P
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens csZIBi
12.3 The Seven-Element Biotar - Split-Rear Singlet MJ^NRT0?b
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ,|SO'dG
12.5 The Seven-Element Biotar - One Compounded Outer Element ZC+F*:$
12.6 The Eight-Element Biotar oK1"8k|Z
12.7 A “Doubled Double-Gauss” Relay -'&4No
;!U`GN,tH
13 Telephoto Lenses '~i;g.n=}-
13.1 The Basic Telephoto p] kpDx[9
13.2 Close-up or Macro Lenses &Npv~Iy
13.3 Telephoto Designs It,m %5
Py
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch -N`j` zb|
BEM_y:#
sXm8KV
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses (,$ H!qKy
14.1 The Reverse Telephoto Principle D)z'FOaI
14.2 The Basic Retrofocus Lens J5Rr7=:*S
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses NQefrof
G4g<PFx
15 Wide Angle Lenses with Negative Outer Lenses ^)=c74;;
\z!*)v/{-
16 The Petzval Lens; Head-up Display Lenses .&d]7@!qy
16.1 The Petzval Portrait Lens z#*M}RR
16.2 The Petzval Projection Lens Kl.xe&t@j
16.3 The Petzval with a Field Flattener zA[6rYXY
16.4 Very Height Speed Petzval Lenses O[[:3!6q
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems [AE-~+m)^
fhqc[@Y[
17 Microscope Objectives xi=Z<G
17.1 General Considerations | ZBv;BW
17.2 Classic Objective Design Forms; The Aplanatic Front cQEK>aAd
17.3 Flat-Field Objectives ~?&;nTwHe
17.4 Reflecting Objectives P1DYjm[+D
17.5 The Microscope Objective Designs xXQ#?::m
'T@K$xL8
18 Mirror and Catadioptric Systems t{?U NW
18.1 The Good and Bad Points of Mirrors
8mTjf Br
18.2 The Classic Two-Mirror Systems 8XtZF,Du
18.3 Catadioptric Systems %Y8#I3jVJ
18.4 Aspheric Correctors and Schmidt Systems ~5$V8yfx h
18.5 Confocal Paraboloids yv| |:wZC
18.6 Unobscured Systems h,B ]5Of
18.7 Design of a Schmidt-Cassegrain “from Scratch” Z\8TpwD2
J1DX}h]
19 Infrared and Ultraviolet Systems ($:s}_<>s
19.1 Infrared Optics B:qH7`s
19.2 IR Objective Lenses wic"a
Y<m
19.3 IR Telescope `oN~
19.4 Laser Beam Expanders 01Bs7@"+
19,5 Ultraviolet Systems }8cL+JJU
19.6 Microlithographic Lenses )@)wcf!b
8v)pPJr
20 Zoom Lenses K FV&Dt}<
20.1 Zoom Lenses +@D [%l|
20.2 Zoom Lenses for Point and Shoot Cameras g(xuA^~J
20.3 A 20X Video Zoom Lens {IEc{y7?gO
20.4 A Zoom Scanner Lens "l~wzPY)
20.5 A Possible Zoom Lens Design Procedure j>XM+>
OI;0dS
21 Projection TV Lenses and Macro Lenses "3CQ0
21.1 Projection TV Lenses kQ4-W9u
21.2 Macro Lenses f ?:
o
-1t"(v
22 Scanner/ , Laser Disk and Collimator Lenses
qk~ ni8
22.1 Monochromatic Systems HV'xDy[)
22.2 Scanner Lenses 9?<WRM3a>
22.3 Laser Disk, Focusing, and Collimator Lenses wN/d
J
v-2_#
23 Tolerance Budgeting TR3_!0
23.1 The Tolerance Budget KK"uSC
23.2 Additive Tolerances jSVIO v:
23.3 Establishing the Tolerance Budget |@KW~YlE
uPbvN[~t
24 Formulary 82#7TX4
24.1 Sign Conventions, Symbols, and Definitions mk?&`_X1
24.2 The Cardinal Points 4Z>KrFO
24.3 Image Equations {J3;4p-&
24.4 Paraxial Ray Tracing (Surface by Surface) bqpy@WiI S
24.5 Invariants u50 o1^<X
24.6 Paraxial Ray Tracing (Component by Component) 3]DUUXg$
24.7 Two-Componenet Relationships .G#wXsJj
24.8 Third-Order Aberrations – Surface Contributions lN$#lyy
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs &Ji!*~sE
24.10 Stop Shift Equations d`9%:2qE
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces @,0W(
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) _r+2o-ZR
\C;cs&\Q
K#q1/2
Glossary <PL94
Reference &rs+x<
Index