"Modern Lens Design" 2nd Edition by Warren J. Smith Sa@T#%oU
xT-`dS0u
Contents of Modern Lens Design 2nd Edition X6=o vm
Js^(mRv=
1 Introduction %<`sDO6Q?
1.1 Lens Design Books !6hV|2aJy
1.2 Reference Material 3R%yKa#
1.3 Specifications na@Go@q
1.4 Lens Design v8zO Y#?
1.5 Lens Design Program Features Rm`P.;%
1.6 About This Book HX ,\a`
lYmxd8
2 Automatic Lens Design gAgF$H .
2.2 The Merit Function |l@z7R+4*
2.3 Local Minima ;*hVAxs1
2.4 The Landscape Lens 0"Zxbgu)
2.5 Types of Merit Function FiSx"o
2.6 Stagnation &Zjs
2.7 Generalized Simulated Annealing <d O~;
2.8 Considerations about Variables for Optimization #kE8EhQZ
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 'F3@Xh
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits WWC&-Ni
2.11 Spectral Weighting ihekON":
2.12 How to Get Started L`(\ud
6 X'#F,M
3 Improving a Design t{,e{oZx
3.1 Lens Design Tip Sheet: Standard Improvement Techniques DXQ]b)y+N
3.2 Glass Changes ( Index and V Values ) y9k'jEZ"oh
3.3 Splitting Elements Wiw~oXo
3.4 Separating a Cemented Doublet LW#U+bv]Dq
3.5 Compounding an Element 4q.yp0E
3.6 Vignetting and Its Uses Tp.:2[
3.7 Eliminating a Weak Element; the Concentric Problem q=*bcDu
3.8 Balancing Aberrations {R"mvB`
3.9 The Symmetrical Principle D5:|CMQ
3.10 Aspheric Surfaces ^]Q.V
Jp|eKZ
4 Evaluation: How Good is This Design g~U<0+&yw%
4.1 The Uses of a Preliminary Evaluation 9_8\xLk
4.2 OPD versus Measures of Performance Q
pIec\a+
4.3 Geometric Blur Spot Size versus Certain Aberrations =uEpeL~d;+
4.4 Interpreting MTF - The Modulation Transfer Function ))<vCfuz2
4.5 Fabrication Considerations %gWQ}QF
H[}lzL)
5 Lens Design Data x U"g~hT
5.1 About the Sample Lens Designs \UX9[5|
5.2 Lens Prescriptions, Drawings, and Aberration Plots d c/^
5.3 Estimating the Potential of a Redesign ym_as8A*Q
5.4 Scaling a Desing, Its Aberrations, and Its MTF mg" _3].j
5.5 Notes on the Interpretation of Ray Intercept Plots A~X\ dcn
5.6 Various Evaluation Plot Fnay{F8z
Ikw.L
6 Telescope Objective IusZY B
6.1 The Thin Airspaced Doublet :4\%a4{Ie
6.2 Merit Function for a Telescope Objective YV} "#
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 7SNdC8GZ~
6.4 Spherochromatism \En"=)A
6.5 Zonal Spherical Aberration 1OqVV?oz
6.6 Induced Aberrations P 00%EB
6.7 Three-Element Objectives EhW"s%Q
6.8 Secondary Spectrum (Apochromatic Systems) 9XKqsvdS
6.9 The Design of an f/7 Apochromatic Triplet n5;@}Rai
6.10 The Diffractive Surface in Lens Design :{VXDT"
6.11 A Final Note A&M(a
r;"D>IM\
7 Eyepieces and Magnifiers ^Wn+G8n
7.1 Eyepieces !aKu9SR^e
7.2 A Pair of Magnifier Designs IP@3R(DS%
7.3 The Simple, Classical Eyepieces sKJr34
7.4 Design Story of an Eyepiece for a 6*30 Binocular 1Kr$JIcd
7.5 Four-Element Eyepieces =qpGAv_#
7.6 Five-Element Eyepieces t0r0{:
7.7 Very High Index Eyepiece/Magnifier gsUF\4A(J
7.8 Six- and Seven-Element Eyepieces fK *l?Hr
C`.eJF
8 Cooke Triplet Anastigmats U_;="y
8.1 Airspaced Triplet Anastigmats Gt
_tL%
8.2 Glass Choice )l.uj
8.3 Vertex Length and Residual Aberrations -~4r6ZcA
8.4 Other Design Considerations ew~?&=
8.5 A Plastic, Aspheric Triplet Camera Lens |"S#uJW
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet R MOs1<D
8.7 Possible Improvement to Our “Basic” Triplet *|y$z+g/
8.7 The Rear Earth (Lanthanum) Glasses sINf/mv+
8.9 Aspherizing the Surfaces ,>za|y<n
8.10 Increasing the Element Thickness bsr]Z&9rrk
`9gV8u
9 Split Triplets /xcXd+k]
#sBL E
10 The Tessar, Heliar, and Other Compounded Triplets $ZZ?*I
10.1 The Classic Tessar nRu %0Op
10.2 The Heliar/Pentac R4P&r=?
10.3 The Portrait Lens and the Enlarger Lens r!O[|h
10.4 Other Compounded Triplets t&F:C
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar mEu2@3^E }
4;3Vc%
11 Double-Meniscus Anastigmats RgJbM\`}?
11.1 Meniscus Components `(`-S
md
11.2 The Hypergon, Totogon, and Metrogon d*VvQU8C
11.3 A Two Element Aspheric Thick Meniscus Camera Lens "I:*
11.4 Protar, Dagor, and Convertible Lenses @YQ*a4`
11.5 The Split Dagor ')~V=F
11.6 The Dogmar qY'+@^<U;
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ]7>#YKH.
B|yz~wuS
12 The Biotar or Double-Gauss Lens <
W`gfpzO
12.1 The Basic Six-Element Version _ `O",Ff
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens b9"t%R9/Q
12.3 The Seven-Element Biotar - Split-Rear Singlet *o\AP([@
12.4 The Seven-Element Biotar - Broken Contact Front Doublet /$]S'[5uF
12.5 The Seven-Element Biotar - One Compounded Outer Element BD;T>M
12.6 The Eight-Element Biotar C22h*QM*
12.7 A “Doubled Double-Gauss” Relay TC44*BHq
bvrXz-j
13 Telephoto Lenses <[-{:dH,5
13.1 The Basic Telephoto KdYR?rY
13.2 Close-up or Macro Lenses oXqJypR 2
13.3 Telephoto Designs ?U[6X|1
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch SZLugyZ2Y
upk+L^
_-TW-{7bh
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses maY.Z<lN
14.1 The Reverse Telephoto Principle =nc;~u|]
14.2 The Basic Retrofocus Lens @ext6cFe3<
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses qyFeq])
7FyE?
15 Wide Angle Lenses with Negative Outer Lenses {r$Ewc$Yb7
d$x vEm
16 The Petzval Lens; Head-up Display Lenses ='w 2"4
16.1 The Petzval Portrait Lens C4d'z(<
16.2 The Petzval Projection Lens ]!P8 {xmb@
16.3 The Petzval with a Field Flattener Z<^EZX3N
16.4 Very Height Speed Petzval Lenses a#i|)[
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 64mD%URT
8 >LDo"<
17 Microscope Objectives ~x/ka43
17.1 General Considerations [7HBn
17.2 Classic Objective Design Forms; The Aplanatic Front 4e .19H9
17.3 Flat-Field Objectives 9W]OtS G
17.4 Reflecting Objectives >B~?
}@^Gk
17.5 The Microscope Objective Designs 3.hFYA w
)u28:+8
18 Mirror and Catadioptric Systems IHi[3xf<
18.1 The Good and Bad Points of Mirrors WQ8 "Jj?k6
18.2 The Classic Two-Mirror Systems vqQ)Pu?T
18.3 Catadioptric Systems ,dK)I1"C
18.4 Aspheric Correctors and Schmidt Systems C96*,.j~'
18.5 Confocal Paraboloids cF=W hP*f
18.6 Unobscured Systems dQ-shfTr]
18.7 Design of a Schmidt-Cassegrain “from Scratch” 7B\NP`l
!9YCuHj!p
19 Infrared and Ultraviolet Systems _h \L6.
19.1 Infrared Optics Xx[,n-rA
19.2 IR Objective Lenses E@xrn+L>-
19.3 IR Telescope }N(gP_?n
19.4 Laser Beam Expanders 3@ Fa
19,5 Ultraviolet Systems eD2eDxN2
19.6 Microlithographic Lenses yvzH}$!]
WjK[% ;Z!
20 Zoom Lenses bHx@
20.1 Zoom Lenses |39,n~"o&
20.2 Zoom Lenses for Point and Shoot Cameras #}@8(>T
20.3 A 20X Video Zoom Lens 4lc|~Fj++
20.4 A Zoom Scanner Lens irq{ 21
20.5 A Possible Zoom Lens Design Procedure k+?gWZ\
N\Lu+ x5
21 Projection TV Lenses and Macro Lenses XMkRYI1~
21.1 Projection TV Lenses {5{VGAD&]>
21.2 Macro Lenses X0^@E
y9/nkF1p
22 Scanner/ , Laser Disk and Collimator Lenses hLuv
22.1 Monochromatic Systems (>ze{T|
22.2 Scanner Lenses sF[gjeIb
22.3 Laser Disk, Focusing, and Collimator Lenses {'h&[f>zcQ
>K4Nn(~ys
23 Tolerance Budgeting `o }+2Cb
23.1 The Tolerance Budget .*9u_2<
23.2 Additive Tolerances [:gg3Qzx
23.3 Establishing the Tolerance Budget lOeX5%$Z
D]*|Zmr+}
24 Formulary )$i,e`T
24.1 Sign Conventions, Symbols, and Definitions r"{jrBK$
24.2 The Cardinal Points B|"i`{>
24.3 Image Equations !
M CV@5$
24.4 Paraxial Ray Tracing (Surface by Surface) f R@Cg
sw
24.5 Invariants ovM;6o
24.6 Paraxial Ray Tracing (Component by Component) 9DM,,h<`
24.7 Two-Componenet Relationships r5nHYV&7
24.8 Third-Order Aberrations – Surface Contributions -2[4 @
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 9@ fSO<
24.10 Stop Shift Equations =$gBWS
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces *'A*!=5(
24.12 Conversion of Aberrations to Wavefront Deformation (OPD)
%!nN<%
~MH^R1=]
=Hd#"9-
Glossary V?G%-+^
Reference T"za|Fo
Index