"Modern Lens Design" 2nd Edition by Warren J. Smith *GQDfs`m
;{vwBDV!'
Contents of Modern Lens Design 2nd Edition n( g)UNx
L}'Yd'
1 Introduction *7ZGq(O
1.1 Lens Design Books V=pMq?Nr
1.2 Reference Material UMV)wy|j
1.3 Specifications
#j;Tb2&w
1.4 Lens Design ]' Y|Nl
1.5 Lens Design Program Features N]NF\7(
1.6 About This Book N0i!l|G6
U{6oLqwq3Y
2 Automatic Lens Design ~h-C&G,v
2.2 The Merit Function JVtQ,oZ
2.3 Local Minima *5_V*v6
2.4 The Landscape Lens QK)){cK
2.5 Types of Merit Function pkJ/oT
2.6 Stagnation R}8XRe
2.7 Generalized Simulated Annealing v??TJ^1
2.8 Considerations about Variables for Optimization u*3NS$vH
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems =;0wFwSz
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ohUdGO[/
2.11 Spectral Weighting hi ~}
2.12 How to Get Started Dj i^+;"&
EIjI!0j
3 Improving a Design zN#*G
i'
3.1 Lens Design Tip Sheet: Standard Improvement Techniques h.)h@$d
3.2 Glass Changes ( Index and V Values ) v2Bzx/F:
3.3 Splitting Elements Z$p0&~
3.4 Separating a Cemented Doublet k.<3HU
3.5 Compounding an Element + WVIZZ8
3.6 Vignetting and Its Uses "-31'R-
3.7 Eliminating a Weak Element; the Concentric Problem QT!
4[,4
3.8 Balancing Aberrations xg<Hxn,<M
3.9 The Symmetrical Principle =-NiO@5o
3.10 Aspheric Surfaces sIy
7tNc=,x}
4 Evaluation: How Good is This Design r> k-KdS
4.1 The Uses of a Preliminary Evaluation {%C*{,#+8q
4.2 OPD versus Measures of Performance X&M4MuL
4.3 Geometric Blur Spot Size versus Certain Aberrations {o0qUX>[
4.4 Interpreting MTF - The Modulation Transfer Function sV/l5]b]
4.5 Fabrication Considerations
%@Oma
\P;rES'
5 Lens Design Data ('O}&F1
5.1 About the Sample Lens Designs Yw'NX5#)g
5.2 Lens Prescriptions, Drawings, and Aberration Plots K<4Kk3
5.3 Estimating the Potential of a Redesign 0V$k7H$Z
5.4 Scaling a Desing, Its Aberrations, and Its MTF BecPT
5.5 Notes on the Interpretation of Ray Intercept Plots LJFG0 W
5.6 Various Evaluation Plot n(1')?"mA
(@r
`$5D.b
6 Telescope Objective #*9-d/K
6.1 The Thin Airspaced Doublet .B72C[' c
6.2 Merit Function for a Telescope Objective `Out(Hn
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 3*ixlO:qGk
6.4 Spherochromatism <q
(z>*-e
6.5 Zonal Spherical Aberration sa1h%<
6.6 Induced Aberrations vAb^]d
6.7 Three-Element Objectives J-xS:Ha'l
6.8 Secondary Spectrum (Apochromatic Systems) ehNzDr\s
6.9 The Design of an f/7 Apochromatic Triplet Es5f*P0
6.10 The Diffractive Surface in Lens Design 7y^%7U \
6.11 A Final Note GOT1@.Y
~g#r6pzN-
7 Eyepieces and Magnifiers T!RT<&
7.1 Eyepieces ,CvG 20>
7.2 A Pair of Magnifier Designs :#5xA?=*
S
7.3 The Simple, Classical Eyepieces 'G&{GVbXY
7.4 Design Story of an Eyepiece for a 6*30 Binocular omSM:f_~
7.5 Four-Element Eyepieces s 5WqR8
7.6 Five-Element Eyepieces R=Zn -q
7.7 Very High Index Eyepiece/Magnifier rH8@69,B
7.8 Six- and Seven-Element Eyepieces 6e,xDr
0 (U#)
8 Cooke Triplet Anastigmats ^n1%OzGK#
8.1 Airspaced Triplet Anastigmats *\}}Bv+9
8.2 Glass Choice |re}6#TgcT
8.3 Vertex Length and Residual Aberrations \1"'E@+
8.4 Other Design Considerations
O.`Jl%
8.5 A Plastic, Aspheric Triplet Camera Lens ^3VR-u <O
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ^y!;xc$(Qs
8.7 Possible Improvement to Our “Basic” Triplet *N'K/36;
8.7 The Rear Earth (Lanthanum) Glasses fq )vK
8.9 Aspherizing the Surfaces h4|i%,f
8.10 Increasing the Element Thickness dCyqvg6u
#LlUxHv #
9 Split Triplets M`YWn ;
3`E=#ff%
10 The Tessar, Heliar, and Other Compounded Triplets sm,VYYs
10.1 The Classic Tessar ]\-^>!F #K
10.2 The Heliar/Pentac S$TmZk=
10.3 The Portrait Lens and the Enlarger Lens {8$=[;
10.4 Other Compounded Triplets dZ#&YG)?e
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar (*}yjUYLZ
c'uhK8|
11 Double-Meniscus Anastigmats {]_uMg#!
11.1 Meniscus Components @"a6fn
11.2 The Hypergon, Totogon, and Metrogon T>TWU:
11.3 A Two Element Aspheric Thick Meniscus Camera Lens PZxAH9 S?
11.4 Protar, Dagor, and Convertible Lenses >r`b_K
11.5 The Split Dagor m!<i0thJ
11.6 The Dogmar K<?nq0-
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens x:-.+C%
XU!2YO)t;!
12 The Biotar or Double-Gauss Lens n0Y+b[+wj
12.1 The Basic Six-Element Version =_$Qtq+h
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens j',W 64
12.3 The Seven-Element Biotar - Split-Rear Singlet *eI)Z=8
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ]Chj T}
12.5 The Seven-Element Biotar - One Compounded Outer Element :w}{$v}#D;
12.6 The Eight-Element Biotar \(226^|j
12.7 A “Doubled Double-Gauss” Relay XL#[%X9
Vk<
LJ
S
13 Telephoto Lenses KT]Pw\y5
13.1 The Basic Telephoto D\IjyZ-O
13.2 Close-up or Macro Lenses Uc/+gz
Z;
13.3 Telephoto Designs 4tL<q_
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch _zlqtO
J+rCxn?;g
*6HTV0jv
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses coYij
14.1 The Reverse Telephoto Principle " \I4u{zC
14.2 The Basic Retrofocus Lens KiG p[eb
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ; ^t{Il'j
~l;[@jsw F
15 Wide Angle Lenses with Negative Outer Lenses R$; n)_H
zdXkR]
16 The Petzval Lens; Head-up Display Lenses _|h8q-[3
16.1 The Petzval Portrait Lens hW{j\@R
16.2 The Petzval Projection Lens x.Q&$#
16.3 The Petzval with a Field Flattener &-(463
16.4 Very Height Speed Petzval Lenses Kw#so; e
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems + QQS={
2WUT/{:X
17 Microscope Objectives jzU.B u.
17.1 General Considerations KWLbD#
17.2 Classic Objective Design Forms; The Aplanatic Front j
";2o(
17.3 Flat-Field Objectives [O:
!(Gje
17.4 Reflecting Objectives LC1(Xbf
17.5 The Microscope Objective Designs E=){K
[M+f-kl
18 Mirror and Catadioptric Systems ~-wPP{!
18.1 The Good and Bad Points of Mirrors 1lv2@QH9
18.2 The Classic Two-Mirror Systems v[Kxja;
18.3 Catadioptric Systems oK 6(HF'&
18.4 Aspheric Correctors and Schmidt Systems <n3!{w3<
18.5 Confocal Paraboloids 3fN.bU9_
18.6 Unobscured Systems OY?y ^45y
18.7 Design of a Schmidt-Cassegrain “from Scratch” Df3rV '/~
c- .t>r&
19 Infrared and Ultraviolet Systems _X@v/sAy
19.1 Infrared Optics +V&{*f)
19.2 IR Objective Lenses `xrmT t
X
19.3 IR Telescope T|tOTk
19.4 Laser Beam Expanders KK@.~'d
19,5 Ultraviolet Systems *)+ut(x|#
19.6 Microlithographic Lenses @)SL_9
OyqNLR
20 Zoom Lenses y8fsveX
20.1 Zoom Lenses sXNb }gJ
20.2 Zoom Lenses for Point and Shoot Cameras 610D%F
20.3 A 20X Video Zoom Lens TX#m&vh
20.4 A Zoom Scanner Lens >}(CEzc8
20.5 A Possible Zoom Lens Design Procedure #-h\. #s
kI%%i>Y}
21 Projection TV Lenses and Macro Lenses k}~O}~-
21.1 Projection TV Lenses mFHH515
21.2 Macro Lenses jsNF#yE>
MxBTX4ES
22 Scanner/ , Laser Disk and Collimator Lenses 3"F`ZJ]=
22.1 Monochromatic Systems ETB6f
22.2 Scanner Lenses p ;|jI1
22.3 Laser Disk, Focusing, and Collimator Lenses k__$Q9qj(
F{ELSKcp.
23 Tolerance Budgeting vVL@K,q
23.1 The Tolerance Budget gzeQ|m2]
23.2 Additive Tolerances _V\Bp=9W
23.3 Establishing the Tolerance Budget !+:ov'F
Mg^e3D1_
24 Formulary Un6/e/6,
24.1 Sign Conventions, Symbols, and Definitions =|=.>?t6Z0
24.2 The Cardinal Points n`4K4y%Dy}
24.3 Image Equations v!%5&: c3
24.4 Paraxial Ray Tracing (Surface by Surface) 8XsguC
24.5 Invariants ^Idle*+
24.6 Paraxial Ray Tracing (Component by Component) Vx @|O%
24.7 Two-Componenet Relationships $y
b4xU
24.8 Third-Order Aberrations – Surface Contributions g(#f:"
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ApjOj/
24.10 Stop Shift Equations DS<}@
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ]^6c8sgnR
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) {aM<{_v
)Z %T27r,^
d:F @a
Glossary 6)BR+U
Reference M?;y\vS?.
Index