"Modern Lens Design" 2nd Edition by Warren J. Smith =o(}=T>:"
j)@W1I]2#
Contents of Modern Lens Design 2nd Edition dg|+?M^9`
5j`sJvq
1 Introduction F>.y>h
1.1 Lens Design Books ?h `,@~6u
1.2 Reference Material 'wPX.h?
1.3 Specifications JlSqTfA
1.4 Lens Design ^6Aa^|
1.5 Lens Design Program Features Jz''UJY/O
1.6 About This Book >.SO2w
+vZYuEq_
2 Automatic Lens Design `)O9
'568
2.2 The Merit Function z
4}"oQk:r
2.3 Local Minima oN}\bK
2.4 The Landscape Lens A6szTX#0
2.5 Types of Merit Function Z&^vEQ
2.6 Stagnation TD\TVK3P
2.7 Generalized Simulated Annealing i<S\x
2.8 Considerations about Variables for Optimization pKLcg"{[F
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ta&z lZt
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits .yF-<Y
2.11 Spectral Weighting (B` NnL$
2.12 How to Get Started VsA_x
3~`\FuHHe
3 Improving a Design +Vg(2Xt
3.1 Lens Design Tip Sheet: Standard Improvement Techniques yi^X?E{WnX
3.2 Glass Changes ( Index and V Values ) *`OXgkQ
3.3 Splitting Elements yMW3mx301j
3.4 Separating a Cemented Doublet t_^cqEr
3.5 Compounding an Element di_N}x*
3.6 Vignetting and Its Uses 9@t&jznt<
3.7 Eliminating a Weak Element; the Concentric Problem T \34<+n1N
3.8 Balancing Aberrations
e$
3.9 The Symmetrical Principle BSS4}qyS
3.10 Aspheric Surfaces GGHMpQ
~a=]w#-KD
4 Evaluation: How Good is This Design bIT[\Q
4.1 The Uses of a Preliminary Evaluation k&yBB%g
4.2 OPD versus Measures of Performance Il/`#b@h
4.3 Geometric Blur Spot Size versus Certain Aberrations ^/2O_C
4.4 Interpreting MTF - The Modulation Transfer Function 9on$0
4.5 Fabrication Considerations [GknE#p
}Bh\N5G%
5 Lens Design Data VIWH~UR)&!
5.1 About the Sample Lens Designs CEk[&39"
5.2 Lens Prescriptions, Drawings, and Aberration Plots #d8]cm=
5.3 Estimating the Potential of a Redesign 34k(:]56|
5.4 Scaling a Desing, Its Aberrations, and Its MTF XPYf1H
5.5 Notes on the Interpretation of Ray Intercept Plots \sGJs8#v][
5.6 Various Evaluation Plot !6.LSY,E
=[4C[s
6 Telescope Objective 5UL5C:3R9
6.1 The Thin Airspaced Doublet Xj?LU7
6.2 Merit Function for a Telescope Objective fk^DkV^<
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 2wU,k(F_
6.4 Spherochromatism @bkSA
6.5 Zonal Spherical Aberration a&)$s;
6.6 Induced Aberrations CNiJuj`
6.7 Three-Element Objectives x =JZ"|TE
6.8 Secondary Spectrum (Apochromatic Systems) .O5|d+S
6.9 The Design of an f/7 Apochromatic Triplet 0NsPo
6.10 The Diffractive Surface in Lens Design bN*zx)f
6.11 A Final Note _58&^:/^
W*c^(W
7 Eyepieces and Magnifiers 09Oe-Bg
7.1 Eyepieces #r&yH^-
7.2 A Pair of Magnifier Designs N}bZdE9F
7.3 The Simple, Classical Eyepieces IxG0TJ_
7.4 Design Story of an Eyepiece for a 6*30 Binocular f$nZogaQ
7.5 Four-Element Eyepieces i/N6 8
7.6 Five-Element Eyepieces aLevml2:T
7.7 Very High Index Eyepiece/Magnifier ,J*#Ixe}
7.8 Six- and Seven-Element Eyepieces bB.nevb9p
pv|D{39Hs
8 Cooke Triplet Anastigmats ZCuh^
8.1 Airspaced Triplet Anastigmats iaJN~m\
M
8.2 Glass Choice P`hg*"<V
8.3 Vertex Length and Residual Aberrations !Je!;mEvI
8.4 Other Design Considerations kD+B8TrW
8.5 A Plastic, Aspheric Triplet Camera Lens +Y~,1ai 5^
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 9&c *%mm
8.7 Possible Improvement to Our “Basic” Triplet Re\V<\$J
8.7 The Rear Earth (Lanthanum) Glasses t;%MSedn
8.9 Aspherizing the Surfaces UJX5}36
8.10 Increasing the Element Thickness xI=[=;L
0w^awT<$6
9 Split Triplets >>7m'-k%D
JENq?$S
10 The Tessar, Heliar, and Other Compounded Triplets .9bP8u2B{
10.1 The Classic Tessar @n=FSn6c
10.2 The Heliar/Pentac VN4H+9E
10.3 The Portrait Lens and the Enlarger Lens ( (mNB]sy
10.4 Other Compounded Triplets wmv/?g
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar nG5:H.)
FCr> $
11 Double-Meniscus Anastigmats [k
+fkr]
11.1 Meniscus Components n;dp%SD
11.2 The Hypergon, Totogon, and Metrogon BI)$aR
11.3 A Two Element Aspheric Thick Meniscus Camera Lens gJn_8\,C>Q
11.4 Protar, Dagor, and Convertible Lenses i*vf(0G
11.5 The Split Dagor PsMCs|*
11.6 The Dogmar ;(Qm<JAa
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens h "r)z6Q/
T xwZ3E
12 The Biotar or Double-Gauss Lens 'r`-J4icX
12.1 The Basic Six-Element Version b!|c:mE9|
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 8-R; &
12.3 The Seven-Element Biotar - Split-Rear Singlet HQ8;d9cGir
12.4 The Seven-Element Biotar - Broken Contact Front Doublet xqzdXL}
12.5 The Seven-Element Biotar - One Compounded Outer Element $5l=&
12.6 The Eight-Element Biotar szb],)|18
12.7 A “Doubled Double-Gauss” Relay ~); 7D'[
l7JY`x
13 Telephoto Lenses A0Hs d
13.1 The Basic Telephoto a)8M'f_z
13.2 Close-up or Macro Lenses #PRkqg+|
13.3 Telephoto Designs ?\Jl] {i2
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch {7X80KI
wg,w;Gle
}"'l8t0?
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses "(d7:!%
14.1 The Reverse Telephoto Principle >H?{=H+/#
14.2 The Basic Retrofocus Lens ]q@6&]9
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses pEE.%U
MY}B)`yx=
15 Wide Angle Lenses with Negative Outer Lenses O}#h^AU-BS
:>g*!hpb
16 The Petzval Lens; Head-up Display Lenses f?A*g$v
16.1 The Petzval Portrait Lens m;nT ?kv
16.2 The Petzval Projection Lens Nu'T0LPNq(
16.3 The Petzval with a Field Flattener ON=6w_
16.4 Very Height Speed Petzval Lenses FCEFg)c5=
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems =sW(2Im
wGf SVA-q\
17 Microscope Objectives vN%SN>=L<
17.1 General Considerations mMvt#+O
17.2 Classic Objective Design Forms; The Aplanatic Front 5)GO
17.3 Flat-Field Objectives anTS8b
17.4 Reflecting Objectives !7-dqw%l
17.5 The Microscope Objective Designs @ zE>n
0xM\+R~,
18 Mirror and Catadioptric Systems AA
um1xl
18.1 The Good and Bad Points of Mirrors >{^&;$G+*
18.2 The Classic Two-Mirror Systems /K9Tn
18.3 Catadioptric Systems 0)'^vJe
18.4 Aspheric Correctors and Schmidt Systems /r Hd9^Y
18.5 Confocal Paraboloids /-l 7GswF
18.6 Unobscured Systems n15F4DnP
18.7 Design of a Schmidt-Cassegrain “from Scratch” Vn6 g(:\w
tQ:)j^\
19 Infrared and Ultraviolet Systems viT/$7`AI
19.1 Infrared Optics g3(fhfR'RN
19.2 IR Objective Lenses zR+EJFf
19.3 IR Telescope RS~jHwIh
19.4 Laser Beam Expanders iC`K$LY4W
19,5 Ultraviolet Systems afcI5w;>}
19.6 Microlithographic Lenses (JHL0Z/
q]Cmaf (
20 Zoom Lenses V\"x#uB
20.1 Zoom Lenses &!#a^d+` 0
20.2 Zoom Lenses for Point and Shoot Cameras ,tZWPF-
20.3 A 20X Video Zoom Lens VSCOuNSc
20.4 A Zoom Scanner Lens dhW)<
20.5 A Possible Zoom Lens Design Procedure 9BPucXK
d3#
>\QCD9
21 Projection TV Lenses and Macro Lenses S3u>a\
21.1 Projection TV Lenses |*Dklo9{
21.2 Macro Lenses brGUK PB
u+GtH;<;
22 Scanner/ , Laser Disk and Collimator Lenses YAqv:
22.1 Monochromatic Systems sHSZIkB-r
22.2 Scanner Lenses ^|?/
y=
22.3 Laser Disk, Focusing, and Collimator Lenses 8M;VX3X
`Li3=!V[
23 Tolerance Budgeting )Ab!R:4
23.1 The Tolerance Budget $UAmUQg)}_
23.2 Additive Tolerances LoQm&3/
23.3 Establishing the Tolerance Budget R g7 O
{i)k# `
24 Formulary hTZaI *
24.1 Sign Conventions, Symbols, and Definitions y_:i'Ri.
24.2 The Cardinal Points vlAYKtl3]
24.3 Image Equations VQO6!ToKY
24.4 Paraxial Ray Tracing (Surface by Surface) #`rvL6W q}
24.5 Invariants oO-kO!59y
24.6 Paraxial Ray Tracing (Component by Component) UW*[)y w]
24.7 Two-Componenet Relationships G%w hOIFRq
24.8 Third-Order Aberrations – Surface Contributions qr[H0f]
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs z^to"j
24.10 Stop Shift Equations ixZ w;+h
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces Gk0f#;
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) <GI{`@5C
;H5PiSq;z
Q<.847 )
Glossary <o8j+G)K#
Reference V8w!yc
Index