"Modern Lens Design" 2nd Edition by Warren J. Smith J0z0%p
G~L#vAY
Contents of Modern Lens Design 2nd Edition
2Ab#uPBn
I*ni )Px
1 Introduction !d@`r1t
1.1 Lens Design Books 8$olP:d
1.2 Reference Material 5"]2@@b4
1.3 Specifications 3@bjIX`=H
1.4 Lens Design s+~Slgl
1.5 Lens Design Program Features 90v18k
1.6 About This Book h>Pg:*N,(
j %0_!*#3
2 Automatic Lens Design vrDRSc6_
2.2 The Merit Function !`U<RlK7
2.3 Local Minima T#f@8 -XUE
2.4 The Landscape Lens }}Uv0g8D
2.5 Types of Merit Function G* 6<pp
2.6 Stagnation RN|..zml
2.7 Generalized Simulated Annealing ,p1]_D&
2.8 Considerations about Variables for Optimization :*nBo
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems H)+kN'J
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Q^Z}Y~.
2.11 Spectral Weighting ?d)|vX3Uf
2.12 How to Get Started 9Q1GV>j>B
.?j8{>
3 Improving a Design ;^i,Q} b/
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 8;NO>L/J]i
3.2 Glass Changes ( Index and V Values ) PyF4uCn"H
3.3 Splitting Elements sn#h=,*4`
3.4 Separating a Cemented Doublet 3NWAyCq-
3.5 Compounding an Element ?@(H.
D6'v
3.6 Vignetting and Its Uses l
d9#4D[#
3.7 Eliminating a Weak Element; the Concentric Problem t1^96@m^
3.8 Balancing Aberrations ijYLf.R<
3.9 The Symmetrical Principle I\23as0q
3.10 Aspheric Surfaces m m`3-F|
Q1[s{,
4 Evaluation: How Good is This Design 1ouTZ'c?
4.1 The Uses of a Preliminary Evaluation Q(3x"+
4.2 OPD versus Measures of Performance /GaR&
4.3 Geometric Blur Spot Size versus Certain Aberrations U:e9Vq'N m
4.4 Interpreting MTF - The Modulation Transfer Function }YO}LQ-|
4.5 Fabrication Considerations .D`#a
'wt|buu-H
5 Lens Design Data <k5~z(
5.1 About the Sample Lens Designs t_Wn<)XA
5.2 Lens Prescriptions, Drawings, and Aberration Plots dp+Y?ufr
5.3 Estimating the Potential of a Redesign mio'm
5.4 Scaling a Desing, Its Aberrations, and Its MTF 7:%K-LeaQu
5.5 Notes on the Interpretation of Ray Intercept Plots e>)5j1
5.6 Various Evaluation Plot T5;D0tM/
I,;)pWX=@
6 Telescope Objective kv b-=
6.1 The Thin Airspaced Doublet |_*1/Wz@
6.2 Merit Function for a Telescope Objective O=/Tx2i;
6.3 The Design of an f/7 Cemented Doublet Telescope Objective u<zDZ{jt)
6.4 Spherochromatism =x}/q4}L
6.5 Zonal Spherical Aberration ^S|^1
6.6 Induced Aberrations '*;rm*n
6.7 Three-Element Objectives dr o42#$Mo
6.8 Secondary Spectrum (Apochromatic Systems) ]Ox.6BKjDP
6.9 The Design of an f/7 Apochromatic Triplet gjV&X N
6.10 The Diffractive Surface in Lens Design KK?~i[aL
6.11 A Final Note $u
sU
*1n:
7 Eyepieces and Magnifiers @Q!j7I
7.1 Eyepieces \m!."~%
7.2 A Pair of Magnifier Designs "/"k50%
7.3 The Simple, Classical Eyepieces O7sn>uO
7.4 Design Story of an Eyepiece for a 6*30 Binocular j@2 hI,+
7.5 Four-Element Eyepieces |&Q=9H*e
7.6 Five-Element Eyepieces ijB,Q>TgO
7.7 Very High Index Eyepiece/Magnifier yw0uF
7.8 Six- and Seven-Element Eyepieces 4`F*] Ft
8Bvjj|~ (@
8 Cooke Triplet Anastigmats `L>'9rbZO
8.1 Airspaced Triplet Anastigmats 9P$'ON'"
8.2 Glass Choice %XeU4yg\e
8.3 Vertex Length and Residual Aberrations 3a0C<hW
8.4 Other Design Considerations 7>LhXC
8.5 A Plastic, Aspheric Triplet Camera Lens voxlo>:
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet
lzuZv$K
8.7 Possible Improvement to Our “Basic” Triplet :\Z0^{
8.7 The Rear Earth (Lanthanum) Glasses "<WSEs
8.9 Aspherizing the Surfaces GFidriC
8.10 Increasing the Element Thickness Mi/_hzZ\
r.GjM#X
9 Split Triplets I}=}S"v
= DgD&_
10 The Tessar, Heliar, and Other Compounded Triplets U PC& O
10.1 The Classic Tessar a lR}|ez
10.2 The Heliar/Pentac iR-O6*PTC
10.3 The Portrait Lens and the Enlarger Lens l?q^j;{Dw
10.4 Other Compounded Triplets 0AEs+=
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar DiX4wmQ
'9)@ U+yfQ
11 Double-Meniscus Anastigmats L!Ro`6|7;
11.1 Meniscus Components N?XN$hwdZ
11.2 The Hypergon, Totogon, and Metrogon ]Vsze4>Z[
11.3 A Two Element Aspheric Thick Meniscus Camera Lens a_yV*N`D
11.4 Protar, Dagor, and Convertible Lenses lFcCWy
11.5 The Split Dagor QEPmuG
11.6 The Dogmar ZttL*KK
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens b<8h\fR#'
#E1*1E
12 The Biotar or Double-Gauss Lens I2dt#
12.1 The Basic Six-Element Version *;m721#
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 'a}{s>{O
12.3 The Seven-Element Biotar - Split-Rear Singlet R Mm`<:H_
12.4 The Seven-Element Biotar - Broken Contact Front Doublet e.T5F`Du
12.5 The Seven-Element Biotar - One Compounded Outer Element a
AuQw
12.6 The Eight-Element Biotar x>@UqUJV
12.7 A “Doubled Double-Gauss” Relay gLH(Wr~(a
(Gc5lMiX3
13 Telephoto Lenses mNJB0B};m
13.1 The Basic Telephoto #FcYJH
13.2 Close-up or Macro Lenses y+PukHY
13.3 Telephoto Designs E(oNS\4
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ;@L#0
u-Vnmig9
/vhh2`
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses +G~b-}
14.1 The Reverse Telephoto Principle ;kbz(:wA
14.2 The Basic Retrofocus Lens ubLLhf
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ,rd+ dN
DXUI/C f
15 Wide Angle Lenses with Negative Outer Lenses 86_Zh5:
?tcbiXRG+
16 The Petzval Lens; Head-up Display Lenses m0 P5a%D
16.1 The Petzval Portrait Lens fq(e~Aqw$
16.2 The Petzval Projection Lens ,d7@*>T&
16.3 The Petzval with a Field Flattener q=bXHtU
16.4 Very Height Speed Petzval Lenses ";~#epPkX
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems n)0{mDf%
r oKiSE`
17 Microscope Objectives QZ6M,\
17.1 General Considerations pUmB
h
17.2 Classic Objective Design Forms; The Aplanatic Front ~EN@$N^h
17.3 Flat-Field Objectives [B4?Z-K%
17.4 Reflecting Objectives @sDd:>t
17.5 The Microscope Objective Designs W+#?3s[FV
GgtL./m
18 Mirror and Catadioptric Systems `{/=i|6
18.1 The Good and Bad Points of Mirrors m$^7sFD$
18.2 The Classic Two-Mirror Systems iqU}t2vFrj
18.3 Catadioptric Systems C@[:}ZGMV
18.4 Aspheric Correctors and Schmidt Systems 6Z"%vrH
18.5 Confocal Paraboloids E'ZWSpP
18.6 Unobscured Systems uC3$iY:_e
18.7 Design of a Schmidt-Cassegrain “from Scratch” ?Cws25G
U +]ab
19 Infrared and Ultraviolet Systems qgDBu\
19.1 Infrared Optics Zy#r<j]T
19.2 IR Objective Lenses {ys_uS{c*
19.3 IR Telescope #Kl;iY:n
19.4 Laser Beam Expanders HwcGbbX)
19,5 Ultraviolet Systems zx!1jS
19.6 Microlithographic Lenses &F:7U!
#RSxo
4
20 Zoom Lenses l]ZUKy
20.1 Zoom Lenses OYKV*
20.2 Zoom Lenses for Point and Shoot Cameras KDhHp^IXQ
20.3 A 20X Video Zoom Lens -or9!:8
20.4 A Zoom Scanner Lens 1#@'U90xf
20.5 A Possible Zoom Lens Design Procedure Q.fBuF
4?&=H
*H:
21 Projection TV Lenses and Macro Lenses
$^l=#tV
21.1 Projection TV Lenses -P?}
qy^j(
21.2 Macro Lenses bw4b'9cK
JWBWa-
22 Scanner/ , Laser Disk and Collimator Lenses j ]P|iL
22.1 Monochromatic Systems G'("-9
22.2 Scanner Lenses F 6Ol5
22.3 Laser Disk, Focusing, and Collimator Lenses & #|vGhA
vr;7p[~
23 Tolerance Budgeting -LY_7Kg
23.1 The Tolerance Budget #Y:/^Q$_qS
23.2 Additive Tolerances MG<~{Y84}
23.3 Establishing the Tolerance Budget c{<3\
] *Hz'
24 Formulary vi2xonq^
24.1 Sign Conventions, Symbols, and Definitions qN) cB?+
24.2 The Cardinal Points LgaJp_d>9*
24.3 Image Equations WP>O7[|
24.4 Paraxial Ray Tracing (Surface by Surface) .UDZW*
24.5 Invariants nO/5X>A,Zw
24.6 Paraxial Ray Tracing (Component by Component) C+iP
@~
24.7 Two-Componenet Relationships NUU}8a(K
24.8 Third-Order Aberrations – Surface Contributions CV6H~t'1
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs itvwmI,m\
24.10 Stop Shift Equations k.0C*3'
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces |N g[^
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) D^u{zZy@e
{kzM*!g
&>/nYvuq -
Glossary !F8
!]"*
Reference lN&GfPP6
Index