"Modern Lens Design" 2nd Edition by Warren J. Smith $Q< >MB7
+(3U_]Lu
Contents of Modern Lens Design 2nd Edition f^?k?_~PN
+&h<:/ V
1 Introduction #)N}F/Od^
1.1 Lens Design Books 8!(09gW'>
1.2 Reference Material -9z!fCu3
1.3 Specifications =Hwlo!
1.4 Lens Design 0'0GAh2
1.5 Lens Design Program Features o\;cXuh
1.6 About This Book Sr?2~R0&
Wc
qUF"A
2 Automatic Lens Design KN-)m ta&
2.2 The Merit Function [b6P
}DW
2.3 Local Minima 1z$K54Mj
2.4 The Landscape Lens V*w~Sr%
2.5 Types of Merit Function `suEN@^
2.6 Stagnation [=q&5'FY0
2.7 Generalized Simulated Annealing CDU$Gi
2.8 Considerations about Variables for Optimization I8:A]
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems 5ps7)]
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits dGY:?mf&
2.11 Spectral Weighting Gm2q`ki
2.12 How to Get Started #.^A5`k
Q&A^(z}
3 Improving a Design aBonq]W
3.1 Lens Design Tip Sheet: Standard Improvement Techniques sV`!4
u7%}
3.2 Glass Changes ( Index and V Values ) u#"L gG.X
3.3 Splitting Elements ^\ocH|D
3.4 Separating a Cemented Doublet NP^j5|A*"
3.5 Compounding an Element -\V!f6Q
3.6 Vignetting and Its Uses 84}Pu%
3.7 Eliminating a Weak Element; the Concentric Problem 2jiH&'@
3.8 Balancing Aberrations qzt.k^'-^
3.9 The Symmetrical Principle 84eqT[I'
3.10 Aspheric Surfaces \x9.[?;=e
u?B9zt%$-m
4 Evaluation: How Good is This Design Uop`)
4.1 The Uses of a Preliminary Evaluation ]Ll<Z
4.2 OPD versus Measures of Performance &K.js
4.3 Geometric Blur Spot Size versus Certain Aberrations vlS+UFH0
4.4 Interpreting MTF - The Modulation Transfer Function z IT)Hs5
4.5 Fabrication Considerations ?6T\uzL +%
:[C"}mR1
5 Lens Design Data |b'}.(/3i
5.1 About the Sample Lens Designs 9O2??N7f
5.2 Lens Prescriptions, Drawings, and Aberration Plots y}bliN7;1e
5.3 Estimating the Potential of a Redesign U1^3 &N8
5.4 Scaling a Desing, Its Aberrations, and Its MTF e"O c
5.5 Notes on the Interpretation of Ray Intercept Plots <*F!A' w2o
5.6 Various Evaluation Plot 3yw`%$d5
bc}BQ|Q
6 Telescope Objective @&xWd{8'
6.1 The Thin Airspaced Doublet ]u<8jr
6.2 Merit Function for a Telescope Objective =dM'n}@U
6.3 The Design of an f/7 Cemented Doublet Telescope Objective k ^(RSu<
6.4 Spherochromatism DP5}q"l
6.5 Zonal Spherical Aberration ?)V?6"fFP
6.6 Induced Aberrations 0hr4}FL8
6.7 Three-Element Objectives b[s=FH]#N
6.8 Secondary Spectrum (Apochromatic Systems) f~?4
6.9 The Design of an f/7 Apochromatic Triplet f5o##ia7:
6.10 The Diffractive Surface in Lens Design &A!?:?3%O
6.11 A Final Note
V
krjs0
FX,kmre3
7 Eyepieces and Magnifiers )N'rYS'9
7.1 Eyepieces UrJrvx
7.2 A Pair of Magnifier Designs {
d |lN:B
7.3 The Simple, Classical Eyepieces I:Q3r"1
7.4 Design Story of an Eyepiece for a 6*30 Binocular >,}SP;
7.5 Four-Element Eyepieces fuao*L]
7.6 Five-Element Eyepieces m:x<maP#E
7.7 Very High Index Eyepiece/Magnifier Oz-;2
7.8 Six- and Seven-Element Eyepieces $WICyI{$
Mv\]uAT`
8 Cooke Triplet Anastigmats c>.=;'2
8.1 Airspaced Triplet Anastigmats h=
Mmd
8.2 Glass Choice 9L7jYy=A#
8.3 Vertex Length and Residual Aberrations %s*F~E
8.4 Other Design Considerations (F=q/lK$
8.5 A Plastic, Aspheric Triplet Camera Lens 1}ER+;If
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet q:ah%x[
8.7 Possible Improvement to Our “Basic” Triplet mGP&NOR0^y
8.7 The Rear Earth (Lanthanum) Glasses =s/UF _JN
8.9 Aspherizing the Surfaces :&`,T.N.vK
8.10 Increasing the Element Thickness EaN1xb(DYa
7Q>bJ Ek7
9 Split Triplets 26B+qXEt
!5*
10 The Tessar, Heliar, and Other Compounded Triplets ]gjB%R[.m
10.1 The Classic Tessar 8'|_O
10.2 The Heliar/Pentac '9XSz?
10.3 The Portrait Lens and the Enlarger Lens b;jr;I
10.4 Other Compounded Triplets y*H rv
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ywY[g{4+
A w"Y_S8.
11 Double-Meniscus Anastigmats Hkzx(yTi
11.1 Meniscus Components >eM>Y@8=
11.2 The Hypergon, Totogon, and Metrogon Gph:'3
*X
11.3 A Two Element Aspheric Thick Meniscus Camera Lens `/RcE.5n\@
11.4 Protar, Dagor, and Convertible Lenses }!*CyO*
11.5 The Split Dagor CX3yIe~u
11.6 The Dogmar kG>m(n
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens JxmFUheLt
(,^jgv|I
12 The Biotar or Double-Gauss Lens UiQF4Uc"
12.1 The Basic Six-Element Version 7
V3r!y
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens QA=mD^A
12.3 The Seven-Element Biotar - Split-Rear Singlet kO/]mNLG
12.4 The Seven-Element Biotar - Broken Contact Front Doublet hp3
<HUU
12.5 The Seven-Element Biotar - One Compounded Outer Element Aq;WQyZ2
12.6 The Eight-Element Biotar RH~I/4e
12.7 A “Doubled Double-Gauss” Relay .!Q*VTW
(8Q*NZ
13 Telephoto Lenses ;/ASl<t,
13.1 The Basic Telephoto EZJ[+ -Q;
13.2 Close-up or Macro Lenses 8>AST,
13.3 Telephoto Designs ^{g('BQx
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch m<I>NYfE
HApjXv!U[
lN~u='Kc
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses $A^OP{
14.1 The Reverse Telephoto Principle i{biQ|,.sL
14.2 The Basic Retrofocus Lens @&9 ,0x
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses F2!]T =
s`I]>e
15 Wide Angle Lenses with Negative Outer Lenses RN"Ur'+
{66P-4Ev(
16 The Petzval Lens; Head-up Display Lenses dM)x|b3z
16.1 The Petzval Portrait Lens BI6]{ ZC"
16.2 The Petzval Projection Lens H> Q
X?>j
16.3 The Petzval with a Field Flattener
|Sr
16.4 Very Height Speed Petzval Lenses g27)$0&0
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems pSdtAv
Nq"J[l*+g
17 Microscope Objectives 8iUYZF
17.1 General Considerations >)6k)$x%%
17.2 Classic Objective Design Forms; The Aplanatic Front 9}$'q$0R]
17.3 Flat-Field Objectives :wY(</H
17.4 Reflecting Objectives IN?6~O
p
17.5 The Microscope Objective Designs BPd *@l
"5@\"L
18 Mirror and Catadioptric Systems ,b9!\OWDF
18.1 The Good and Bad Points of Mirrors =4#p|OZP
18.2 The Classic Two-Mirror Systems (d*~Qpi{7
18.3 Catadioptric Systems )QW
p[bV
18.4 Aspheric Correctors and Schmidt Systems CPci
'SO
18.5 Confocal Paraboloids MuF{STE>->
18.6 Unobscured Systems Xk`' m[
18.7 Design of a Schmidt-Cassegrain “from Scratch” tvcM<
e20
Mz: "p.
19 Infrared and Ultraviolet Systems l#& \,T
19.1 Infrared Optics s[Whg!2~
19.2 IR Objective Lenses >)bn #5
19.3 IR Telescope ,'%*z
19.4 Laser Beam Expanders #'8'5b
19,5 Ultraviolet Systems cv"Bhql
19.6 Microlithographic Lenses `]4tJJy$
Y*0j/91
20 Zoom Lenses "L+NN|
20.1 Zoom Lenses =y0h\<[
20.2 Zoom Lenses for Point and Shoot Cameras >D_!d@Z
20.3 A 20X Video Zoom Lens [sZ,nB/
20.4 A Zoom Scanner Lens 8+Abw)]s
20.5 A Possible Zoom Lens Design Procedure l,ic-Y1
L0>7v
21 Projection TV Lenses and Macro Lenses -cgMf\YF
21.1 Projection TV Lenses 09J,!NN
21.2 Macro Lenses 0?*":o30
+[7 DRT:
22 Scanner/ , Laser Disk and Collimator Lenses
j>A=Wa7
22.1 Monochromatic Systems G;AJBs>Y}
22.2 Scanner Lenses O |0V mm
22.3 Laser Disk, Focusing, and Collimator Lenses 4VP$,|a
7_`_iymR
23 Tolerance Budgeting
C:p`
23.1 The Tolerance Budget (97&mhs3
23.2 Additive Tolerances $GQ{Ai:VwF
23.3 Establishing the Tolerance Budget " nLWvV1
M3s:B& /
24 Formulary Dop,_94G
24.1 Sign Conventions, Symbols, and Definitions og`g]Z<I
24.2 The Cardinal Points c/}-pZn<
24.3 Image Equations Ws:+P~8
24.4 Paraxial Ray Tracing (Surface by Surface) A'suZpL
24.5 Invariants uQ3W =
24.6 Paraxial Ray Tracing (Component by Component) }*c[}VLN
24.7 Two-Componenet Relationships ;aDYw [
24.8 Third-Order Aberrations – Surface Contributions KouIzWf.
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs zKFiCP
K
24.10 Stop Shift Equations %<\tN^rP
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces /! M%9gu
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) Cf.(/5X
"@L|Z6U(
>S@><[C
Glossary )<`/Aaie
Reference :oytJhxU
Index