"Modern Lens Design" 2nd Edition by Warren J. Smith Ga"t4[=I
i!9yN:m0
Contents of Modern Lens Design 2nd Edition !h4L_D0
<^{|5u
1 Introduction xDm^f^}>
1.1 Lens Design Books Ry8@U9B6,t
1.2 Reference Material ,*Jm\u
1.3 Specifications r!'\$(m E
1.4 Lens Design x pT85D
1.5 Lens Design Program Features 1jpcoJ@s
1.6 About This Book F.zn:y X5
YQLp#
2 Automatic Lens Design _Uc le
2.2 The Merit Function
hT]\*},
2.3 Local Minima C[gy{40}
2.4 The Landscape Lens g^/
2.5 Types of Merit Function se2ay_<F+
2.6 Stagnation Cwl#(;@
2.7 Generalized Simulated Annealing 6x7pqHM
2.8 Considerations about Variables for Optimization {dTtYL$'"
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems >8\EdN59{
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Q0s!]Dk
2.11 Spectral Weighting
$ac
VJI?
2.12 How to Get Started h.(CAm%Y7
_Gvn1"l
3 Improving a Design 4*&_h g)h
3.1 Lens Design Tip Sheet: Standard Improvement Techniques }j;*7x8(
3.2 Glass Changes ( Index and V Values ) $n.oY5=\
3.3 Splitting Elements |]y]K%
3.4 Separating a Cemented Doublet 6SJ
3.5 Compounding an Element ;rC)*=4#
3.6 Vignetting and Its Uses [9Q}e;T
3.7 Eliminating a Weak Element; the Concentric Problem PRa#;Wb
3.8 Balancing Aberrations !lpKZG
3.9 The Symmetrical Principle )*Xd
3.10 Aspheric Surfaces +zn&DG0\X
9)}Nx>K
4 Evaluation: How Good is This Design F l@%?
4.1 The Uses of a Preliminary Evaluation u czOSd
4.2 OPD versus Measures of Performance c0h:Vqk-
4.3 Geometric Blur Spot Size versus Certain Aberrations [<CIh46S.
4.4 Interpreting MTF - The Modulation Transfer Function s~V%eq("}
4.5 Fabrication Considerations j+YA/54`
JL.noV3q$
5 Lens Design Data I:?1(.kd2-
5.1 About the Sample Lens Designs qRC-+k:
5.2 Lens Prescriptions, Drawings, and Aberration Plots g:V8"'
5.3 Estimating the Potential of a Redesign b+7!$
5.4 Scaling a Desing, Its Aberrations, and Its MTF 9O1#%
5.5 Notes on the Interpretation of Ray Intercept Plots 5'*v-l,[
5.6 Various Evaluation Plot #[=%+ *Q
&iYy
6 Telescope Objective \-i5b
6.1 The Thin Airspaced Doublet tj<a , l
6.2 Merit Function for a Telescope Objective %an"cQ
]
6.3 The Design of an f/7 Cemented Doublet Telescope Objective +a7J;-|
6.4 Spherochromatism 2GkJ7cL
6.5 Zonal Spherical Aberration t|XQFb@}
6.6 Induced Aberrations pH!e<m
6.7 Three-Element Objectives 0@ccXFE
6.8 Secondary Spectrum (Apochromatic Systems) x"7`,W
6.9 The Design of an f/7 Apochromatic Triplet :jo
!Yi
6.10 The Diffractive Surface in Lens Design Teo&V
6.11 A Final Note ,z8<[Q-#
]A.:8;
7 Eyepieces and Magnifiers 33/aYy
7.1 Eyepieces Tp-<!^o4
7.2 A Pair of Magnifier Designs k?[|8H~2C
7.3 The Simple, Classical Eyepieces 1j4(/A
7.4 Design Story of an Eyepiece for a 6*30 Binocular n_ORD@$]
7.5 Four-Element Eyepieces z;fi
7.6 Five-Element Eyepieces Pi7IBz
7.7 Very High Index Eyepiece/Magnifier eksYIQZ]
7.8 Six- and Seven-Element Eyepieces )}`3haG
x.J%
c[Q8
8 Cooke Triplet Anastigmats N i\*<:_
8.1 Airspaced Triplet Anastigmats DSb/+8KT
8.2 Glass Choice U TT 7a"
8.3 Vertex Length and Residual Aberrations gpt98:w:
8.4 Other Design Considerations 35>VCjCw0
8.5 A Plastic, Aspheric Triplet Camera Lens BM6 J
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ^
hoz<Ns
8.7 Possible Improvement to Our “Basic” Triplet
LY>-kz]
8.7 The Rear Earth (Lanthanum) Glasses 7NG^I6WP-
8.9 Aspherizing the Surfaces YTWlR]Tr6?
8.10 Increasing the Element Thickness R>
r@[$z+
+=Xgi$
9 Split Triplets ~D[5AXV`^
IG}`~% Z
10 The Tessar, Heliar, and Other Compounded Triplets _DlkTi5(w
10.1 The Classic Tessar 4&TTPcSt;
10.2 The Heliar/Pentac +aa( YGL
10.3 The Portrait Lens and the Enlarger Lens ^##tk
10.4 Other Compounded Triplets MGoYL\
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar kaK0'l2%
zzq7?]D
11 Double-Meniscus Anastigmats $%*E)~
11.1 Meniscus Components Ry5/O?QL
11.2 The Hypergon, Totogon, and Metrogon 7F=Xn@ _
11.3 A Two Element Aspheric Thick Meniscus Camera Lens JYQ.Y!X1O
11.4 Protar, Dagor, and Convertible Lenses ^7cZ9/3
11.5 The Split Dagor !sbKJ+V7
11.6 The Dogmar * &iSW~s
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens kB`t_`7f
?hW?w$C
12 The Biotar or Double-Gauss Lens [;IW'cXNq
12.1 The Basic Six-Element Version qT
U(]O1
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens T!GX^nn*O
12.3 The Seven-Element Biotar - Split-Rear Singlet .'+*>y!
12.4 The Seven-Element Biotar - Broken Contact Front Doublet )@%wj;>a
12.5 The Seven-Element Biotar - One Compounded Outer Element F.nJXZnJ
12.6 The Eight-Element Biotar )T4%}$(
12.7 A “Doubled Double-Gauss” Relay oN0p$/La
Ib$*w)4:
13 Telephoto Lenses ?B&Z x-krd
13.1 The Basic Telephoto ~hJ/&,vH!
13.2 Close-up or Macro Lenses AYB
=iLa
13.3 Telephoto Designs *""JE'wG
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch (6Ssk4
\dIc_6/D1
Y+ZQN>
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses LdSBNg#3
14.1 The Reverse Telephoto Principle %TO=]>q
14.2 The Basic Retrofocus Lens ppwjr
+
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ]klP.&I/0
@O~
15 Wide Angle Lenses with Negative Outer Lenses IV"OzQONx
v^Vr^!3
16 The Petzval Lens; Head-up Display Lenses j _r?4k
16.1 The Petzval Portrait Lens vY+{zGF
16.2 The Petzval Projection Lens 0zSRk]i.f
16.3 The Petzval with a Field Flattener .I6:iB
16.4 Very Height Speed Petzval Lenses $]&0`F
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems zvvF9
a!`b`r-4
17 Microscope Objectives yQ^k%hHa
17.1 General Considerations I|RMxx y;
17.2 Classic Objective Design Forms; The Aplanatic Front Y}'8`.
17.3 Flat-Field Objectives 994
17.4 Reflecting Objectives Mn<G9KR
17.5 The Microscope Objective Designs Pc=S^}+
/3MTutM|<X
18 Mirror and Catadioptric Systems GrwoV~
18.1 The Good and Bad Points of Mirrors R"j6 w[tn
18.2 The Classic Two-Mirror Systems H9c
18.3 Catadioptric Systems s_`PPl_D$K
18.4 Aspheric Correctors and Schmidt Systems AnB]f~Yjl
18.5 Confocal Paraboloids /EJwO3MW
18.6 Unobscured Systems _h@s)"
18.7 Design of a Schmidt-Cassegrain “from Scratch” sd (I@
&y
QuJ~h}k
19 Infrared and Ultraviolet Systems fS( )F*J
19.1 Infrared Optics SUSam/xeg"
19.2 IR Objective Lenses =1rq?M eX
19.3 IR Telescope |FF"vRi8a7
19.4 Laser Beam Expanders C'iJFfgR
19,5 Ultraviolet Systems (thDv rT@2
19.6 Microlithographic Lenses "8pfLI
*O`76+iZ|_
20 Zoom Lenses 1|_8+)i;
20.1 Zoom Lenses hq5=>p
20.2 Zoom Lenses for Point and Shoot Cameras LU#DkuIG
20.3 A 20X Video Zoom Lens O@.afk"{
20.4 A Zoom Scanner Lens _}_lrg}U
20.5 A Possible Zoom Lens Design Procedure 1[QH68
T?!&a0
21 Projection TV Lenses and Macro Lenses =xO q-M
21.1 Projection TV Lenses Tk9/1C{8
21.2 Macro Lenses %-z AV*>
8QFn/&Ql$B
22 Scanner/ , Laser Disk and Collimator Lenses 9fWr{fx
22.1 Monochromatic Systems 0baq696<F
22.2 Scanner Lenses -:O~J#D
22.3 Laser Disk, Focusing, and Collimator Lenses C:$12{I?*
\O]1QM94Y
23 Tolerance Budgeting Sa V]6/|
23.1 The Tolerance Budget &"V%n
23.2 Additive Tolerances Jm%hb,
23.3 Establishing the Tolerance Budget yIS.'mK
l:!4^>SC
24 Formulary $,vZX u|Qw
24.1 Sign Conventions, Symbols, and Definitions 8[\(*E}d!X
24.2 The Cardinal Points 0:W*_w0Ge
24.3 Image Equations !Ua74C
24.4 Paraxial Ray Tracing (Surface by Surface) V^qZ~US
24.5 Invariants YF{ KSGq
24.6 Paraxial Ray Tracing (Component by Component) mp_(ke
24.7 Two-Componenet Relationships ~YxLDo'.t
24.8 Third-Order Aberrations – Surface Contributions _IAvFJI
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs yFt'<{z[nL
24.10 Stop Shift Equations ulnG|3A9
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces +C~,q{u
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) }2sc|K^
l}>gG[q!
x\ :x`k@
Glossary i!/V wGg
Reference @@U'I^iG
Index