"Modern Lens Design" 2nd Edition by Warren J. Smith S5F5Tr;TN
lB/^
Contents of Modern Lens Design 2nd Edition <jYyA]Zy5
+8 \?7,FY
1 Introduction ^{0*?,-x
1.1 Lens Design Books Gx4uf
1.2 Reference Material 8dt=@pwx&
1.3 Specifications };"_Ku4#-
1.4 Lens Design nZL!}3@<
1.5 Lens Design Program Features %yKcp5_
1.6 About This Book wouk~>Jft
=u0a/2u|
2 Automatic Lens Design !H c6$
2.2 The Merit Function ~p{YuW[e
2.3 Local Minima !nsr( 7X2
2.4 The Landscape Lens A(BjU:D(Oj
2.5 Types of Merit Function Yh"9,Z&wiR
2.6 Stagnation =x(k)RTDu
2.7 Generalized Simulated Annealing )w&|VvM )L
2.8 Considerations about Variables for Optimization '|v<^EH
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems s-x1<+E(
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits glM42s
2.11 Spectral Weighting r]QeP{
2.12 How to Get Started L.K| ]]u
KMfRMc&
3 Improving a Design l6xqc,h!K
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 'zMmJl}\vd
3.2 Glass Changes ( Index and V Values ) l9+CJAmq
3.3 Splitting Elements #_3-(H5u
3.4 Separating a Cemented Doublet yEJ3O^(F
3.5 Compounding an Element VB8eGMo
3.6 Vignetting and Its Uses l$l6,OzS@
3.7 Eliminating a Weak Element; the Concentric Problem .Q@]+&`|}i
3.8 Balancing Aberrations &pz`gna
3.9 The Symmetrical Principle <.BY=z=H
3.10 Aspheric Surfaces /L!
=##
C deV3
4 Evaluation: How Good is This Design 5OOXCtIKf
4.1 The Uses of a Preliminary Evaluation RASk=B
4.2 OPD versus Measures of Performance SnvT !ca
4.3 Geometric Blur Spot Size versus Certain Aberrations "~6&rt
4.4 Interpreting MTF - The Modulation Transfer Function ix?Z:pIS0
4.5 Fabrication Considerations &lzCRRnvt
?aTC+\=
5 Lens Design Data VRY@}>W'
5.1 About the Sample Lens Designs Qch'C0u
5.2 Lens Prescriptions, Drawings, and Aberration Plots _x!/40^G
5.3 Estimating the Potential of a Redesign aGE}
EK }
5.4 Scaling a Desing, Its Aberrations, and Its MTF o?.VW/"
5.5 Notes on the Interpretation of Ray Intercept Plots 7Ot&]M
5.6 Various Evaluation Plot PqyR,Bcx0
fG.6S"|M
6 Telescope Objective
~Z#\f5yv@
6.1 The Thin Airspaced Doublet SwrzW'%A
6.2 Merit Function for a Telescope Objective _qt
6.3 The Design of an f/7 Cemented Doublet Telescope Objective |
ObA=[j
6.4 Spherochromatism vZ=dlu_t
6.5 Zonal Spherical Aberration ^tjM1uaZ5(
6.6 Induced Aberrations ^QHgc_oDm
6.7 Three-Element Objectives = 4'r+2[
6.8 Secondary Spectrum (Apochromatic Systems) +f_3JL$
6.9 The Design of an f/7 Apochromatic Triplet H6$pA^
6.10 The Diffractive Surface in Lens Design r>"l:GZ
6.11 A Final Note w5Ucj*A\
XwU1CejP0
7 Eyepieces and Magnifiers w0<1=;_%
7.1 Eyepieces O=!Eqa ExW
7.2 A Pair of Magnifier Designs >7W8_6sC<
7.3 The Simple, Classical Eyepieces /B{cL`<
7.4 Design Story of an Eyepiece for a 6*30 Binocular Ac
+fL
7.5 Four-Element Eyepieces >DzW OB
7.6 Five-Element Eyepieces "Vwk&~B%
7.7 Very High Index Eyepiece/Magnifier `j.-hy>s
7.8 Six- and Seven-Element Eyepieces -b
)~
Fj<a;oV
8 Cooke Triplet Anastigmats v:9Vp{)
8.1 Airspaced Triplet Anastigmats {qH+S/
8.2 Glass Choice bD1IY1
8.3 Vertex Length and Residual Aberrations zj1_#=]
8.4 Other Design Considerations +]C|y ,r
8.5 A Plastic, Aspheric Triplet Camera Lens %IUTi6P
l
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet GN|xd+O_
8.7 Possible Improvement to Our “Basic” Triplet }.<]A
8.7 The Rear Earth (Lanthanum) Glasses dFnu&u"
8.9 Aspherizing the Surfaces ;,B $lgF
8.10 Increasing the Element Thickness vFgnbWxG
x$bCbg
9 Split Triplets !T]bz+
M>jk"*hA|
10 The Tessar, Heliar, and Other Compounded Triplets 7 /DDQ
10.1 The Classic Tessar xw1n;IO4
10.2 The Heliar/Pentac p;2NO&
10.3 The Portrait Lens and the Enlarger Lens BUla2p
10.4 Other Compounded Triplets RUV:
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar &=-{adm
Novn#0a
11 Double-Meniscus Anastigmats z}P1+Pm
11.1 Meniscus Components >#xIqxV,
11.2 The Hypergon, Totogon, and Metrogon rPJbbV",+^
11.3 A Two Element Aspheric Thick Meniscus Camera Lens z"{Ji{>%=
11.4 Protar, Dagor, and Convertible Lenses (n@&M!a
11.5 The Split Dagor 82=>I*0Q
11.6 The Dogmar thQ)J |1
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 4Mjcx.21
m' L8z
fX
12 The Biotar or Double-Gauss Lens %4h$/~
12.1 The Basic Six-Element Version <\5E{/7Tl
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 9%bqY9NFd
12.3 The Seven-Element Biotar - Split-Rear Singlet T_4y;mf!@O
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Y:K1v:Knw
12.5 The Seven-Element Biotar - One Compounded Outer Element uJt*> ;Kp
12.6 The Eight-Element Biotar 7|pF(sb0
12.7 A “Doubled Double-Gauss” Relay 7E)*]7B%
os`#:Ao5
13 Telephoto Lenses c_.4~>qw
13.1 The Basic Telephoto N51RBA
13.2 Close-up or Macro Lenses |gJI}"T
13.3 Telephoto Designs 7 T9 Mo
.
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch :|E-Dx4F6H
(n~GKcA
WH0$v#8`v
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses WB>M7MI%
14.1 The Reverse Telephoto Principle >=3ay^(Y2D
14.2 The Basic Retrofocus Lens D TSK*a `
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses xrCb29{
D7(kkr:r
15 Wide Angle Lenses with Negative Outer Lenses dfA4OZ&
8>~\R=SC
16 The Petzval Lens; Head-up Display Lenses '?v-o)X
16.1 The Petzval Portrait Lens >KnXj7
16.2 The Petzval Projection Lens *D$Hd">X
16.3 The Petzval with a Field Flattener Z3Y(g
16.4 Very Height Speed Petzval Lenses BJI"DrF
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems FaE,rzn)iD
YA4;gH +
17 Microscope Objectives Umt?COc
17.1 General Considerations t"L-9kCM
17.2 Classic Objective Design Forms; The Aplanatic Front ,aQ{
17.3 Flat-Field Objectives "yc_*R(pU
17.4 Reflecting Objectives n*GsM6Y&
17.5 The Microscope Objective Designs uf&Ke
k,
b#z{["%Zp
18 Mirror and Catadioptric Systems S2EeC&-AR
18.1 The Good and Bad Points of Mirrors x5)YZ~5
18.2 The Classic Two-Mirror Systems 9Fv VM9
18.3 Catadioptric Systems r1QLSD]i6
18.4 Aspheric Correctors and Schmidt Systems
2<' 1m{
18.5 Confocal Paraboloids |oI]
18.6 Unobscured Systems bQu1L>c,Uw
18.7 Design of a Schmidt-Cassegrain “from Scratch” &^!vi2$5}
nq"U`z@R
19 Infrared and Ultraviolet Systems A5LTgGzaW
19.1 Infrared Optics R#i{eE*WF
19.2 IR Objective Lenses fu6Ir,
19.3 IR Telescope n%Gk
{h5
19.4 Laser Beam Expanders Y<drRK!
19,5 Ultraviolet Systems Rr/sxR|0_
19.6 Microlithographic Lenses zw,=mpf3_
Qt+;b
20 Zoom Lenses y&$v@]t1
20.1 Zoom Lenses DU>#eR0G
20.2 Zoom Lenses for Point and Shoot Cameras 1'{A,!
20.3 A 20X Video Zoom Lens fmQ`8b
20.4 A Zoom Scanner Lens 7`IoQvX
20.5 A Possible Zoom Lens Design Procedure Ps!~miN|>
P7`sJ("#
21 Projection TV Lenses and Macro Lenses %qf ?_2v
21.1 Projection TV Lenses b _#r_`
21.2 Macro Lenses &6mXsx$
ndU<,{r
22 Scanner/ , Laser Disk and Collimator Lenses "0(
_
22.1 Monochromatic Systems +vh 4I
22.2 Scanner Lenses Pa-p9]gq
22.3 Laser Disk, Focusing, and Collimator Lenses & NO:S
@L ,hA
v^
23 Tolerance Budgeting 2!+saf^-,
23.1 The Tolerance Budget `"* ]C
23.2 Additive Tolerances aV9QIH~
23.3 Establishing the Tolerance Budget ?onTW2cG;
Vo2{aK;
24 Formulary
1:+f@#
24.1 Sign Conventions, Symbols, and Definitions %kRQ9I".
24.2 The Cardinal Points KPcOW#.T
24.3 Image Equations %3r`EIB6
24.4 Paraxial Ray Tracing (Surface by Surface) t kJw}W1@
24.5 Invariants nA#FGfZ{Ge
24.6 Paraxial Ray Tracing (Component by Component) z[q#Dw
24.7 Two-Componenet Relationships <:rbK9MIl
24.8 Third-Order Aberrations – Surface Contributions ~ojH$=K>d
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs QmpP_eS >
24.10 Stop Shift Equations 0$~zeG"
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces XpLK0YI
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) XpH]CF
MvLmEmKb}\
p*_^JU(<p
Glossary >)sB#<e
Reference Xj^Hy"HC^~
Index