"Modern Lens Design" 2nd Edition by Warren J. Smith `(dRb
G#(+p|n
Contents of Modern Lens Design 2nd Edition (F.vVldBy
n~e#Y<IP\1
1 Introduction #ozQF~
1.1 Lens Design Books [-pB}1Dxb
1.2 Reference Material ;<~lzfs
1.3 Specifications 8ba*:sb
1.4 Lens Design WER\04%D\m
1.5 Lens Design Program Features C\d5t4s
1.6 About This Book |#rP~Nj)
wRLj>nc
2 Automatic Lens Design xy.di9
2.2 The Merit Function J ;e/S6l
2.3 Local Minima X"z!52*3]
2.4 The Landscape Lens ,x.2kb
2.5 Types of Merit Function ,VTX7vaH
2.6 Stagnation wsg u# as|
2.7 Generalized Simulated Annealing |:{H4
2.8 Considerations about Variables for Optimization 5%Xny8
]|D
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems IY=CTFQ8lm
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits FhyA_U%/nF
2.11 Spectral Weighting qt
!T%K
2.12 How to Get Started GA.4'W^&a
&9*MO
3 Improving a Design {k#RWDespy
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 1X45~
3.2 Glass Changes ( Index and V Values ) 1MF0HiC
3.3 Splitting Elements (wtw1E5X
3.4 Separating a Cemented Doublet TM1D|H
3.5 Compounding an Element ^^m3
11=
3.6 Vignetting and Its Uses mEM/}]2
3.7 Eliminating a Weak Element; the Concentric Problem M^$liS.D
3.8 Balancing Aberrations f|&ga'5g&
3.9 The Symmetrical Principle -Jj"JN.
3.10 Aspheric Surfaces ,aLdW,<6
(H*d">`mz
4 Evaluation: How Good is This Design #FHyP1uyc
4.1 The Uses of a Preliminary Evaluation oB8x_0#n
4.2 OPD versus Measures of Performance [61T$ .
4.3 Geometric Blur Spot Size versus Certain Aberrations \a|bx4M
4.4 Interpreting MTF - The Modulation Transfer Function nGdEJ
4.5 Fabrication Considerations XJ.ERLR.
nYv`{0S+m
5 Lens Design Data VIi/=mO]
5.1 About the Sample Lens Designs yN Bb(!u
5.2 Lens Prescriptions, Drawings, and Aberration Plots ?g5u#Q>!
5.3 Estimating the Potential of a Redesign t'F_1P^*/
5.4 Scaling a Desing, Its Aberrations, and Its MTF -1>$3-ur~
5.5 Notes on the Interpretation of Ray Intercept Plots KJf~9w9U
5.6 Various Evaluation Plot nU6WT |
.vbUv3NI
6 Telescope Objective 7rdPA9
6.1 The Thin Airspaced Doublet pSLv1d"9{
6.2 Merit Function for a Telescope Objective Q.N, Q`P
6.3 The Design of an f/7 Cemented Doublet Telescope Objective yye(^
6.4 Spherochromatism :<}.3 Q?&
6.5 Zonal Spherical Aberration Y8fahQ#
6.6 Induced Aberrations '[6o(~*
6.7 Three-Element Objectives h{sY5d'D
6.8 Secondary Spectrum (Apochromatic Systems) q[}[w! to
6.9 The Design of an f/7 Apochromatic Triplet ;~ >E^0M
6.10 The Diffractive Surface in Lens Design o=,q4;R'
6.11 A Final Note &>Ko}?w
l*yh(3~}
7 Eyepieces and Magnifiers #1v>3H(
7.1 Eyepieces u7Xr!d+wR
7.2 A Pair of Magnifier Designs Yp_R+a^
7.3 The Simple, Classical Eyepieces >^ E
7.4 Design Story of an Eyepiece for a 6*30 Binocular P9RIX;A=
7.5 Four-Element Eyepieces (M5{y`Kk
7.6 Five-Element Eyepieces %Ny`d49&
7.7 Very High Index Eyepiece/Magnifier q hPvU(
,
7.8 Six- and Seven-Element Eyepieces =>0+BD
.skR4f,h
8 Cooke Triplet Anastigmats NB z3j
8.1 Airspaced Triplet Anastigmats :IZ(9=hs
8.2 Glass Choice bwm?\l.A
8.3 Vertex Length and Residual Aberrations PKx ewd
8.4 Other Design Considerations &d`z|Gx9
8.5 A Plastic, Aspheric Triplet Camera Lens RRNoX}
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet v GF<
8.7 Possible Improvement to Our “Basic” Triplet W:8*Z8?7
8.7 The Rear Earth (Lanthanum) Glasses CulU?-[i
8.9 Aspherizing the Surfaces Vo\RtM/6{
8.10 Increasing the Element Thickness 5nGDt~a
8"#Ix1#
9 Split Triplets sc2nLyn$
r*'X ]q|L+
10 The Tessar, Heliar, and Other Compounded Triplets C XQPbt[5
10.1 The Classic Tessar w
:w
10.2 The Heliar/Pentac >tq,F"2amC
10.3 The Portrait Lens and the Enlarger Lens M#sDPT
10.4 Other Compounded Triplets Ua@rp3fr
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar b,U3b})(
cdDMV%V
11 Double-Meniscus Anastigmats 8"M*,?.]
11.1 Meniscus Components oH/4opV
11.2 The Hypergon, Totogon, and Metrogon Ch1+YZG
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 5K;vdwSB
11.4 Protar, Dagor, and Convertible Lenses :.-z) C}
11.5 The Split Dagor ,6zH;fi
11.6 The Dogmar +q==Y/z
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens p<|I!n&9
idC4yH42
12 The Biotar or Double-Gauss Lens 2o`a^'Iw
12.1 The Basic Six-Element Version Q}J'S5%
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ]to"X7/
12.3 The Seven-Element Biotar - Split-Rear Singlet i4Y_5
12.4 The Seven-Element Biotar - Broken Contact Front Doublet b"ypS7
_
12.5 The Seven-Element Biotar - One Compounded Outer Element <bwsK,C
12.6 The Eight-Element Biotar 8QeM6;^/5
12.7 A “Doubled Double-Gauss” Relay D<rO:Er?*a
>b |TaQ
13 Telephoto Lenses W |]24
13.1 The Basic Telephoto qNhQ2x\
13.2 Close-up or Macro Lenses C*}TY)8
13.3 Telephoto Designs K)Nbl^6x
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch DR o@gYDn
>-Qg4%m
,KlTitJl\+
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses h^P>,dy0
14.1 The Reverse Telephoto Principle 74 c1i
14.2 The Basic Retrofocus Lens 9})!~r;|
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses }57wE$9K
S8O^^jJq;
15 Wide Angle Lenses with Negative Outer Lenses 5q`d=L,
3U&QonCV
16 The Petzval Lens; Head-up Display Lenses rSIb1zJ
16.1 The Petzval Portrait Lens f:k3j}&
16.2 The Petzval Projection Lens $X%GzrN
16.3 The Petzval with a Field Flattener 8c m,G
16.4 Very Height Speed Petzval Lenses t6;Ln().Hw
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems /3*75
Mj&f7IUO
17 Microscope Objectives /;M0tP
17.1 General Considerations *'+OA6
17.2 Classic Objective Design Forms; The Aplanatic Front ?Uzs^rsb
17.3 Flat-Field Objectives XelY?Ph,,
17.4 Reflecting Objectives V8>%$O
sw
17.5 The Microscope Objective Designs >Au]S`
'#SacJ\L7
18 Mirror and Catadioptric Systems ]@o p
18.1 The Good and Bad Points of Mirrors .`!|^h%0
18.2 The Classic Two-Mirror Systems VVdgNT|}W
18.3 Catadioptric Systems Yn,dM~|Cc
18.4 Aspheric Correctors and Schmidt Systems DJeP]
18.5 Confocal Paraboloids +[9~ta|j
18.6 Unobscured Systems ]6{G;f$
18.7 Design of a Schmidt-Cassegrain “from Scratch” "v-\nAu
:K&
19 Infrared and Ultraviolet Systems w$H=GF?"
19.1 Infrared Optics <CL0@?*i9
19.2 IR Objective Lenses ]Au78Yom
19.3 IR Telescope ;m}lmq,
19.4 Laser Beam Expanders rUkiwqr~E
19,5 Ultraviolet Systems x`^~|Q
19.6 Microlithographic Lenses )<
~1AL
>9D=PnHnD
20 Zoom Lenses *1V}vJvi
20.1 Zoom Lenses 0@E[IDmp
20.2 Zoom Lenses for Point and Shoot Cameras I<*U^e
20.3 A 20X Video Zoom Lens M'D;2qo
20.4 A Zoom Scanner Lens 9)sGnD;
20.5 A Possible Zoom Lens Design Procedure &yzC\XdA
ARW|wXhyf
21 Projection TV Lenses and Macro Lenses t&u,Od
21.1 Projection TV Lenses E.?|L-fy
21.2 Macro Lenses g% :Q86u
A'qJke=
22 Scanner/ , Laser Disk and Collimator Lenses /Cr0jWu
_
22.1 Monochromatic Systems ,,oiL
22.2 Scanner Lenses m~\BkE/[l
22.3 Laser Disk, Focusing, and Collimator Lenses :|oH11y
i\G@ kJNnF
23 Tolerance Budgeting >Vc_.dR)E
23.1 The Tolerance Budget AFL* a*
23.2 Additive Tolerances .O'S@ %]
23.3 Establishing the Tolerance Budget o[^% 0uVF
XU.ZYYZ=
24 Formulary 3a9Oj'd1M
24.1 Sign Conventions, Symbols, and Definitions lyKV^7}
24.2 The Cardinal Points j& f-yc'i-
24.3 Image Equations zt!mx{l'
24.4 Paraxial Ray Tracing (Surface by Surface) +L*2 6ar6
24.5 Invariants PdJtJqA8h\
24.6 Paraxial Ray Tracing (Component by Component) ,T_HE3 K
24.7 Two-Componenet Relationships {<&I4V@+
24.8 Third-Order Aberrations – Surface Contributions wQ[~7 ,o
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Z=DAA+T`
24.10 Stop Shift Equations 0R<@*
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces i NzoDmE*
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) oddS~lW
I(/W+o
3> -/sii
Glossary ,JRYG<O_T
Reference ?stx3sZ
Index