"Modern Lens Design" 2nd Edition by Warren J. Smith $wU\Js`/S]
i@CxI<1'
Contents of Modern Lens Design 2nd Edition |)G<,FJQE_
RrgGEx
1 Introduction w*MpX
U<
1.1 Lens Design Books [SW_C
1.2 Reference Material s9d_GhT%-
1.3 Specifications >OK^D+v"j
1.4 Lens Design b u"!jHPB
1.5 Lens Design Program Features &"q=5e2
1.6 About This Book -!9G0h&i|
W}1
;Z(.*
2 Automatic Lens Design fxIf|9Qi`
2.2 The Merit Function 8x{'@WCG%
2.3 Local Minima 2Hv+W-6v
2.4 The Landscape Lens 2:=
2.5 Types of Merit Function <^uBoKB/f
2.6 Stagnation f
V( J|
2.7 Generalized Simulated Annealing e0 T\tc
2.8 Considerations about Variables for Optimization xP,hTE
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems FsryEHz
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits DFTyMB1H
2.11 Spectral Weighting j8`BdKg
2.12 How to Get Started :,I:usW"
:a)u&g@G
3 Improving a Design 9&ids!W~yx
3.1 Lens Design Tip Sheet: Standard Improvement Techniques @ry_nKr9
3.2 Glass Changes ( Index and V Values ) z$xo$R(
3.3 Splitting Elements PiYxk+N
3.4 Separating a Cemented Doublet ofv)SCjd
3.5 Compounding an Element = 9]~yt
3.6 Vignetting and Its Uses J)C/u{o
3.7 Eliminating a Weak Element; the Concentric Problem
#C3.Jef
3.8 Balancing Aberrations 09Cez\0
3.9 The Symmetrical Principle O1mKe%'|
3.10 Aspheric Surfaces WeiFmar
>e"#'K0?\
4 Evaluation: How Good is This Design N8FF3}>
g
4.1 The Uses of a Preliminary Evaluation VU d\QR-
4.2 OPD versus Measures of Performance XvlU*TO~(~
4.3 Geometric Blur Spot Size versus Certain Aberrations
U`m54f@U
4.4 Interpreting MTF - The Modulation Transfer Function W{gb:^;zb
4.5 Fabrication Considerations 1y4
Ue~CwFOc
5 Lens Design Data k)Qtfj}uij
5.1 About the Sample Lens Designs *`RkTcG
5.2 Lens Prescriptions, Drawings, and Aberration Plots Y.r+wc]
5.3 Estimating the Potential of a Redesign C 6AUNRpl
5.4 Scaling a Desing, Its Aberrations, and Its MTF \;"=QmRD%:
5.5 Notes on the Interpretation of Ray Intercept Plots (*)hD(C5
5.6 Various Evaluation Plot 9p2&)kb6
d{7+w/Zi
6 Telescope Objective xlg9TvvI
6.1 The Thin Airspaced Doublet igR";OQk
6.2 Merit Function for a Telescope Objective [1
9,&]z
6.3 The Design of an f/7 Cemented Doublet Telescope Objective A$:U'ZG_
6.4 Spherochromatism w:Kl6"c
6.5 Zonal Spherical Aberration 46&/gehr
6.6 Induced Aberrations *ppffz
6.7 Three-Element Objectives s}% M4
6.8 Secondary Spectrum (Apochromatic Systems) 7VF LJrt
6.9 The Design of an f/7 Apochromatic Triplet `lt"[K<
6.10 The Diffractive Surface in Lens Design 2V;PYI
6.11 A Final Note :A'y+MnK<
-pXSSa;O9
7 Eyepieces and Magnifiers ?m?::R H
7.1 Eyepieces Ak"m 85B
7.2 A Pair of Magnifier Designs r?
E)obE
7.3 The Simple, Classical Eyepieces <?4V
7.4 Design Story of an Eyepiece for a 6*30 Binocular 3x'|]Ns
7.5 Four-Element Eyepieces C&rkvM8
7.6 Five-Element Eyepieces ?oHpFlj
7.7 Very High Index Eyepiece/Magnifier 9c :cw
7.8 Six- and Seven-Element Eyepieces lv+TD!b
&@Be2!%'9K
8 Cooke Triplet Anastigmats 'u |c
8.1 Airspaced Triplet Anastigmats HqT#$}rv
8.2 Glass Choice <;Zmjeb+#
8.3 Vertex Length and Residual Aberrations 9e,0\J
8.4 Other Design Considerations [}0haTYc4
8.5 A Plastic, Aspheric Triplet Camera Lens -0x
#
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet l3I:Q^x@
8.7 Possible Improvement to Our “Basic” Triplet =w
2**$
8.7 The Rear Earth (Lanthanum) Glasses SmSH2m-
8.9 Aspherizing the Surfaces S2VA{9:m
8.10 Increasing the Element Thickness
k5.Lna
<s<n
9 Split Triplets O*)Vhw'pK
!\.pq 2
10 The Tessar, Heliar, and Other Compounded Triplets XG{zlOD+
10.1 The Classic Tessar 54R#W:t
10.2 The Heliar/Pentac zL `iK"N`
10.3 The Portrait Lens and the Enlarger Lens A!WKnb_`
10.4 Other Compounded Triplets uH- l%17
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ::{Q1F
fN^8{w/O
11 Double-Meniscus Anastigmats 70tH:Z)"
11.1 Meniscus Components !/i{l
11.2 The Hypergon, Totogon, and Metrogon c?[I?ytl
11.3 A Two Element Aspheric Thick Meniscus Camera Lens dufu|BL|}
11.4 Protar, Dagor, and Convertible Lenses e_ANUll1
11.5 The Split Dagor c>:wd@w
11.6 The Dogmar 3>`mI8$t
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 9u}Hmb
NzOx0WLF
12 The Biotar or Double-Gauss Lens 9BBmw(M}
12.1 The Basic Six-Element Version ( !fKNia@S
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens peuZ&yK+"
12.3 The Seven-Element Biotar - Split-Rear Singlet EPM-df!=
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Y}|X|!0x
12.5 The Seven-Element Biotar - One Compounded Outer Element F {4bo$~>
12.6 The Eight-Element Biotar tKx~1-
12.7 A “Doubled Double-Gauss” Relay MSqVlj
4`]^@"{
13 Telephoto Lenses O#~yKqB
13.1 The Basic Telephoto 9YQb&
13.2 Close-up or Macro Lenses ]uJ"?k=
13.3 Telephoto Designs ][h%UrV
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch < ?}-$
<~'"<HwtK
rt~d6|6
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Pz |>"'
14.1 The Reverse Telephoto Principle /dQl)tL
14.2 The Basic Retrofocus Lens QIvVcfM^
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses O{G?;H$
1&evG-#<:
15 Wide Angle Lenses with Negative Outer Lenses 6x[}g
j94=hJVKi
16 The Petzval Lens; Head-up Display Lenses C>j@,G4
16.1 The Petzval Portrait Lens a /l)qB#
16.2 The Petzval Projection Lens Ln<`E|[29
16.3 The Petzval with a Field Flattener lC("y'
::
16.4 Very Height Speed Petzval Lenses cr?Q[8%t1
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems L Mbn
ex9g?*Q
17 Microscope Objectives Ou!2[oe@M
17.1 General Considerations |w1Bq
17.2 Classic Objective Design Forms; The Aplanatic Front 2%@4]
17.3 Flat-Field Objectives #TX/aKr:
17.4 Reflecting Objectives Cc' 37~6~P
17.5 The Microscope Objective Designs fg!__Rdi
ith
3=`3
18 Mirror and Catadioptric Systems ~tUl}
18.1 The Good and Bad Points of Mirrors ," Wr"
18.2 The Classic Two-Mirror Systems q?oP?cCw
18.3 Catadioptric Systems x?p1
HUK
18.4 Aspheric Correctors and Schmidt Systems st3l2Q
18.5 Confocal Paraboloids &(G\[RWp\
18.6 Unobscured Systems !&ayYu##{
18.7 Design of a Schmidt-Cassegrain “from Scratch” _A5e{Gb
?{|q5n
19 Infrared and Ultraviolet Systems UkT=W!cq
19.1 Infrared Optics C] eSizS.
19.2 IR Objective Lenses v/0QOp
19.3 IR Telescope ~u!|qM
19.4 Laser Beam Expanders YpZ+n*&+
19,5 Ultraviolet Systems ox>^>wR*
19.6 Microlithographic Lenses #ASz;$P
lL3khJ:%
20 Zoom Lenses KL:j?.0
20.1 Zoom Lenses *1
]uH e
20.2 Zoom Lenses for Point and Shoot Cameras 7he,?T)vD
20.3 A 20X Video Zoom Lens z(e xA
20.4 A Zoom Scanner Lens /-ch`u md
20.5 A Possible Zoom Lens Design Procedure |`Ntv}
c74.< @w
21 Projection TV Lenses and Macro Lenses =J]]EoX/
21.1 Projection TV Lenses z8~NZ;A
21.2 Macro Lenses +EAsW(F1
k\YG^I
22 Scanner/ , Laser Disk and Collimator Lenses `PdQX.wN
22.1 Monochromatic Systems w d^':
22.2 Scanner Lenses MS>Ge0P("~
22.3 Laser Disk, Focusing, and Collimator Lenses u\x}8pn
KB,j7
~V
23 Tolerance Budgeting Ic:(Gi- %
23.1 The Tolerance Budget Un(aW=PQ0
23.2 Additive Tolerances /y#f3r+*2
23.3 Establishing the Tolerance Budget e7r-R3_
g^2OkV(
24 Formulary !/*\}\'4
24.1 Sign Conventions, Symbols, and Definitions E7 Ul;d
24.2 The Cardinal Points gQelD6c
24.3 Image Equations dulI&_x
24.4 Paraxial Ray Tracing (Surface by Surface) A*R^n}sh
24.5 Invariants e&F8m%t
24.6 Paraxial Ray Tracing (Component by Component) Y3cMC)
24.7 Two-Componenet Relationships o&zJ=k[4
24.8 Third-Order Aberrations – Surface Contributions N1S{suic
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Nw/ ku
24.10 Stop Shift Equations qIE9$7*X
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces +z\^t_"f
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) Nk
8 B_{
B+VubUPMS
Mj?`j_X
Glossary g i-$ZFzB
Reference ]G=L=D^cK
Index