"Modern Lens Design" 2nd Edition by Warren J. Smith a4'KiA2r
?-'m#5i"
Contents of Modern Lens Design 2nd Edition ZkbaUIQ
4<`Qyul-
1 Introduction h8R3N?S3#
1.1 Lens Design Books 3Z,J&d`[
1.2 Reference Material uJBs 3X
1.3 Specifications !m7`E
1.4 Lens Design d4y?2p ?3
1.5 Lens Design Program Features U)v['5%
1.6 About This Book >Yr-aDV
;3\oU$'
2 Automatic Lens Design
VL^.7U
2.2 The Merit Function I+qg'mo
2.3 Local Minima YIP /N
2.4 The Landscape Lens U<T.o0s=
2.5 Types of Merit Function 96L-bBtyY
2.6 Stagnation g43j-[j)
2.7 Generalized Simulated Annealing 8KxBN)fO;
2.8 Considerations about Variables for Optimization ,'FH[2
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems ^,P#
<,D,
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits uc.dtq!
2.11 Spectral Weighting uc0 1{t0,
2.12 How to Get Started D'{NEk@
Uavr>-
3 Improving a Design [
" n+2;
3.1 Lens Design Tip Sheet: Standard Improvement Techniques }]dK26pX
3.2 Glass Changes ( Index and V Values ) rV
yw1D
3.3 Splitting Elements nFRU-D$7
3.4 Separating a Cemented Doublet YY!Lv:.7>
3.5 Compounding an Element |@84l
3.6 Vignetting and Its Uses 2#<)-Cak
3.7 Eliminating a Weak Element; the Concentric Problem pQQN8Y~^Y
3.8 Balancing Aberrations % oPt],>
3.9 The Symmetrical Principle FU{$oCh/5
3.10 Aspheric Surfaces 0_!')+
K-_XdJ\
4 Evaluation: How Good is This Design {B!LhvYAH
4.1 The Uses of a Preliminary Evaluation 7WEh'(`
4.2 OPD versus Measures of Performance ]xx}\k
4.3 Geometric Blur Spot Size versus Certain Aberrations &.m.ruab
4.4 Interpreting MTF - The Modulation Transfer Function J$aE:g6'
4.5 Fabrication Considerations n\-nBrVSf
i6S5 4&^!
5 Lens Design Data jTR>H bh
5.1 About the Sample Lens Designs (D\7EH\9,]
5.2 Lens Prescriptions, Drawings, and Aberration Plots Ofx]
5.3 Estimating the Potential of a Redesign $#ve^.VHv
5.4 Scaling a Desing, Its Aberrations, and Its MTF I]4L0r-
5.5 Notes on the Interpretation of Ray Intercept Plots _u[2R=h
5.6 Various Evaluation Plot $ \yZ;Z:
Z[ NO`!<
6 Telescope Objective KF4D)NM|
6.1 The Thin Airspaced Doublet H^VNw1.
6.2 Merit Function for a Telescope Objective <Ny DrO"C3
6.3 The Design of an f/7 Cemented Doublet Telescope Objective p#\JKx
6.4 Spherochromatism BR*'SF\T
6.5 Zonal Spherical Aberration m{ wk0
6.6 Induced Aberrations VW$a(G_h
6.7 Three-Element Objectives Rudj"OGO
6.8 Secondary Spectrum (Apochromatic Systems) 65HP9`5Tm
6.9 The Design of an f/7 Apochromatic Triplet Q.U
wtH
6.10 The Diffractive Surface in Lens Design {Vw\#/,
6.11 A Final Note -ho%9LW%|
R&-Vm3mc3
7 Eyepieces and Magnifiers |Ix{JP"Lk
7.1 Eyepieces Kl Kk?6>
7.2 A Pair of Magnifier Designs zu,F 0;De
7.3 The Simple, Classical Eyepieces ~E8L,h~
7.4 Design Story of an Eyepiece for a 6*30 Binocular hfJeVT-/v
7.5 Four-Element Eyepieces ~6Xr^An/Z
7.6 Five-Element Eyepieces D2y[?RG
7.7 Very High Index Eyepiece/Magnifier K9HXy*y49
7.8 Six- and Seven-Element Eyepieces |3bCq(ZR\P
nxjP4d>
8 Cooke Triplet Anastigmats 9hTzi+'S
8.1 Airspaced Triplet Anastigmats t'e\Z2
8.2 Glass Choice >1$vG
8.3 Vertex Length and Residual Aberrations A_4.>g
8.4 Other Design Considerations !RXG{1:
8.5 A Plastic, Aspheric Triplet Camera Lens b2tUJ2p
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet #Q]^9/;|4n
8.7 Possible Improvement to Our “Basic” Triplet G<$N*3
8.7 The Rear Earth (Lanthanum) Glasses 6CV9ewr
8.9 Aspherizing the Surfaces Y'{F^VxA/
8.10 Increasing the Element Thickness NQmdEsK
D}MCVNd^
9 Split Triplets W>o>Y$H
${F4x "x
10 The Tessar, Heliar, and Other Compounded Triplets 3J_BuMV
10.1 The Classic Tessar ng{"W|
10.2 The Heliar/Pentac &)$}Nk
10.3 The Portrait Lens and the Enlarger Lens S8d X8,qg
10.4 Other Compounded Triplets W\pO`FL
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ln2lFfz
S]x\Asj;w
11 Double-Meniscus Anastigmats ls@j8bVv^
11.1 Meniscus Components bzWWW^kNL
11.2 The Hypergon, Totogon, and Metrogon aGml!N5'
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ED;rp9(
11.4 Protar, Dagor, and Convertible Lenses fe4Ki
11.5 The Split Dagor SjL&\),
11.6 The Dogmar 6Bf aB:
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens $X_A74(
:Ldx^UO
12 The Biotar or Double-Gauss Lens rizWaw5E!8
12.1 The Basic Six-Element Version IZs NMY
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens {g]Mx|5Q
12.3 The Seven-Element Biotar - Split-Rear Singlet d=DQS>Nz
12.4 The Seven-Element Biotar - Broken Contact Front Doublet O>3f*Cc
12.5 The Seven-Element Biotar - One Compounded Outer Element rQsYt/
12.6 The Eight-Element Biotar [vTk*#Cl4
12.7 A “Doubled Double-Gauss” Relay .Y5o&at6s
*hIjVKTu79
13 Telephoto Lenses skP'- ^F~
13.1 The Basic Telephoto b[rVr
J
13.2 Close-up or Macro Lenses C0}@0c
13.3 Telephoto Designs z=6zc-$y 9
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ".7\>8A#a
+GvPJI
045_0+r"@
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses ^N&@7s
14.1 The Reverse Telephoto Principle e|d~&Bk0
14.2 The Basic Retrofocus Lens phi9/tO\u
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses a797'{j#PI
Ih<.2
15 Wide Angle Lenses with Negative Outer Lenses 6hiWgbE
*6aIDFNl
16 The Petzval Lens; Head-up Display Lenses se@?:n1)
16.1 The Petzval Portrait Lens ?Q~o<%U7
16.2 The Petzval Projection Lens 0fog/c#q(
16.3 The Petzval with a Field Flattener a7}O.NDf
16.4 Very Height Speed Petzval Lenses 3_ ZlZ_Tq
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems Tn"^`\m
5ENEx
17 Microscope Objectives }u]7 x:lh
17.1 General Considerations -BC`p 8
17.2 Classic Objective Design Forms; The Aplanatic Front 1\Z/}FT
17.3 Flat-Field Objectives ;~GBD]
17.4 Reflecting Objectives PJL
[En*
17.5 The Microscope Objective Designs Vr:`?V9Q2(
b ;>?m
18 Mirror and Catadioptric Systems 9/h[(qvT
18.1 The Good and Bad Points of Mirrors !;Vqs/E
18.2 The Classic Two-Mirror Systems qH(HcsgD
18.3 Catadioptric Systems ZkryoIQ%=
18.4 Aspheric Correctors and Schmidt Systems $kBcnk
18.5 Confocal Paraboloids J^-a@'`+
18.6 Unobscured Systems 2j&0U!DX
18.7 Design of a Schmidt-Cassegrain “from Scratch” OCELG~
j@R"AP}
19 Infrared and Ultraviolet Systems DN;|?oNZ
19.1 Infrared Optics :3[;9xCHj
19.2 IR Objective Lenses 5KTPlqm0qF
19.3 IR Telescope PsM8J
19.4 Laser Beam Expanders 6x;!E&<
19,5 Ultraviolet Systems G_`Ae%'h
19.6 Microlithographic Lenses srhI%Zj
@RHG@{x{K
20 Zoom Lenses 9t!Agxm
20.1 Zoom Lenses phR:=Ox|1
20.2 Zoom Lenses for Point and Shoot Cameras "(mF5BE-E
20.3 A 20X Video Zoom Lens {_4`0J`3
20.4 A Zoom Scanner Lens 05Q4$P
20.5 A Possible Zoom Lens Design Procedure 4BZ7R,m#.
)jjL'
21 Projection TV Lenses and Macro Lenses TN/y4(j
21.1 Projection TV Lenses *j<{3$6Ii
21.2 Macro Lenses P4:Zy;$v!
TZhYgV
22 Scanner/ , Laser Disk and Collimator Lenses
(aLjW=
22.1 Monochromatic Systems (duR1Dz
22.2 Scanner Lenses =>XjChM
22.3 Laser Disk, Focusing, and Collimator Lenses z.^_;Vql_
nrR2U`
23 Tolerance Budgeting V
n+a-v
23.1 The Tolerance Budget n~ZZX={a
23.2 Additive Tolerances Z7I\\M
23.3 Establishing the Tolerance Budget .{-X1tJ7
Zb&"W]HSf
24 Formulary -O\fy!
24.1 Sign Conventions, Symbols, and Definitions 6xFchdMG{m
24.2 The Cardinal Points rX0 ?m:&m
24.3 Image Equations ;Sfe.ky@6
24.4 Paraxial Ray Tracing (Surface by Surface) `A#0If
24.5 Invariants %, S{9q
24.6 Paraxial Ray Tracing (Component by Component) vSR5F9
24.7 Two-Componenet Relationships
#jsN
24.8 Third-Order Aberrations – Surface Contributions 5uV_Pkb?8
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs w3#0kl
24.10 Stop Shift Equations -qBdcbi|x)
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces EQQ@nW{;
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) Zs8]A0$
2f1Q&S
6z]y
=J
Glossary $)$_}^.k
Reference 4 !m'9
Index