"Modern Lens Design" 2nd Edition by Warren J. Smith cu.f]'
MH1??vW
Contents of Modern Lens Design 2nd Edition qY0p)`3!%
:+; UW
\
1 Introduction @"];\E$sI
1.1 Lens Design Books sAWUtJ
1.2 Reference Material UP^{'eh
1.3 Specifications v 6Tz7
1.4 Lens Design }>>BKn
1.5 Lens Design Program Features Yaht<Hy
1.6 About This Book 9>%ti&_-jt
mZ'`XAS ~;
2 Automatic Lens Design X&pK#=
2.2 The Merit Function G-xW&wC-
2.3 Local Minima fC52nK&T8
2.4 The Landscape Lens t*~V]wZ
2.5 Types of Merit Function k#&d`?X
2.6 Stagnation pvD\E
2.7 Generalized Simulated Annealing d A[I
2.8 Considerations about Variables for Optimization "I}3*s9Q-
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems i_Ab0vye
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits >d&B:
2.11 Spectral Weighting 8 YsDE_
2.12 How to Get Started
C65(
m
ZXh6Se4o
3 Improving a Design QGs\af
3.1 Lens Design Tip Sheet: Standard Improvement Techniques +"'cSAK
3.2 Glass Changes ( Index and V Values ) Nyip]VwMJ
3.3 Splitting Elements :'|%~&J
3.4 Separating a Cemented Doublet -J[*fv@
3.5 Compounding an Element 4[v
%]g`
3.6 Vignetting and Its Uses by (xv0v;
3.7 Eliminating a Weak Element; the Concentric Problem v=R=K
3.8 Balancing Aberrations TFjb1a,)
3.9 The Symmetrical Principle 3dTz$s/[
3.10 Aspheric Surfaces Ko|nF-r_
<k+dJ=f
4 Evaluation: How Good is This Design jhOQ)QE|
4.1 The Uses of a Preliminary Evaluation >|'u:`A
4.2 OPD versus Measures of Performance f.-b.nNf
4.3 Geometric Blur Spot Size versus Certain Aberrations UJ* D
4.4 Interpreting MTF - The Modulation Transfer Function
p"\Z@c
4.5 Fabrication Considerations Nr8#/H2f
SfLZVB
5 Lens Design Data T{<riJ`O
5.1 About the Sample Lens Designs ZF^$?;'3
5.2 Lens Prescriptions, Drawings, and Aberration Plots [T<nTB# w
5.3 Estimating the Potential of a Redesign E<]O,z;F
5.4 Scaling a Desing, Its Aberrations, and Its MTF +twl`Z3n
5.5 Notes on the Interpretation of Ray Intercept Plots la+RK
5.6 Various Evaluation Plot #q#C_"
Dukvi;\
6 Telescope Objective 6}4?,r
6.1 The Thin Airspaced Doublet P'MfuTtT&
6.2 Merit Function for a Telescope Objective 0N>NX?r
6.3 The Design of an f/7 Cemented Doublet Telescope Objective H3CG'?{ _
6.4 Spherochromatism ;+jz=9Q-
6.5 Zonal Spherical Aberration 9K,PT.c
6.6 Induced Aberrations EIQ`?8KSR
6.7 Three-Element Objectives i[_B~/_
6.8 Secondary Spectrum (Apochromatic Systems) c_wvuKa
6.9 The Design of an f/7 Apochromatic Triplet 2t
7':X
6.10 The Diffractive Surface in Lens Design ZEa31[@B[
6.11 A Final Note
.Nt;J,U
>J(._K
7 Eyepieces and Magnifiers a8nqzuI
7.1 Eyepieces 5argw+2s4$
7.2 A Pair of Magnifier Designs b?i5C4=K
7.3 The Simple, Classical Eyepieces U1nObA
7.4 Design Story of an Eyepiece for a 6*30 Binocular c[VVCN8dA
7.5 Four-Element Eyepieces t@r>GHO
7.6 Five-Element Eyepieces F/p/&9
7.7 Very High Index Eyepiece/Magnifier x9\z^GU%H
7.8 Six- and Seven-Element Eyepieces 3ScOJo
O?,Grn%'.
8 Cooke Triplet Anastigmats SzXR],dA
8.1 Airspaced Triplet Anastigmats dmA#v:$1
8.2 Glass Choice Z:eB9R#2y
8.3 Vertex Length and Residual Aberrations k0r93xa
8.4 Other Design Considerations 1?I_fA}
8.5 A Plastic, Aspheric Triplet Camera Lens zu/BDyF
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet "qh~wK J
8.7 Possible Improvement to Our “Basic” Triplet (:er~Y}
8.7 The Rear Earth (Lanthanum) Glasses (E(J}r~E
8.9 Aspherizing the Surfaces D*=.;Rq
8.10 Increasing the Element Thickness Mbm'cM&}
VN3[B
eH
9 Split Triplets At<D36,^"
/tdRUX
10 The Tessar, Heliar, and Other Compounded Triplets ^k J>4
10.1 The Classic Tessar >G9YYt~
10.2 The Heliar/Pentac VEsIhjQ
10.3 The Portrait Lens and the Enlarger Lens ]C'^&:&<
10.4 Other Compounded Triplets LO;7NK
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar DyPHQ}G
N=T 0Td
11 Double-Meniscus Anastigmats qt{lZ_$
11.1 Meniscus Components ,tTq25~H\
11.2 The Hypergon, Totogon, and Metrogon q!;u4J
11.3 A Two Element Aspheric Thick Meniscus Camera Lens :_8Nf1B+T
11.4 Protar, Dagor, and Convertible Lenses F:7d}Jx
11.5 The Split Dagor jWL%*dJrN
11.6 The Dogmar ]A&pXAM
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Y;)l
;IOM3'5T@
12 The Biotar or Double-Gauss Lens 'vwu^u?
12.1 The Basic Six-Element Version rSa=NpFxLu
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens K>2M*bGcp
12.3 The Seven-Element Biotar - Split-Rear Singlet gp+aUK~o
12.4 The Seven-Element Biotar - Broken Contact Front Doublet fK|P144
12.5 The Seven-Element Biotar - One Compounded Outer Element v?Zo5uVoq
12.6 The Eight-Element Biotar &K*Kr=9N
12.7 A “Doubled Double-Gauss” Relay v\lKY*@f
Y(RB@+67
13 Telephoto Lenses Y{d-k1?s5
13.1 The Basic Telephoto W"Tj.oCUG
13.2 Close-up or Macro Lenses 5[y+X|Am
13.3 Telephoto Designs sTS/]"l
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch M ]Hf>7p
6e>P!bo
!aB~G}'
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses yGY:EvH^?
14.1 The Reverse Telephoto Principle M3G ecjR
14.2 The Basic Retrofocus Lens s^> >]
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses }Uu#N H
yUjkRT&h
15 Wide Angle Lenses with Negative Outer Lenses D"msD"
d`UK mj
16 The Petzval Lens; Head-up Display Lenses :85QwN]\
16.1 The Petzval Portrait Lens 8 =oUE$9
16.2 The Petzval Projection Lens wQ^RXbJI9
16.3 The Petzval with a Field Flattener EQtY b"_
16.4 Very Height Speed Petzval Lenses ?bAv{1dvT=
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems _lDNYpv
K&VMhMVb
17 Microscope Objectives ^[&,MQU{7
17.1 General Considerations ~ o=kW2Y
17.2 Classic Objective Design Forms; The Aplanatic Front .ah[!O
17.3 Flat-Field Objectives 9m.MGJbQ_f
17.4 Reflecting Objectives "$/1.SX;]
17.5 The Microscope Objective Designs E!RlH3})
7|xu)zYB
18 Mirror and Catadioptric Systems Bg[_MDWc-P
18.1 The Good and Bad Points of Mirrors F/PH=Dk
18.2 The Classic Two-Mirror Systems 9;Q|"
T
18.3 Catadioptric Systems Eunmc
18.4 Aspheric Correctors and Schmidt Systems |xF!3GGms
18.5 Confocal Paraboloids v@4vitbG9
18.6 Unobscured Systems H$V`,=H
18.7 Design of a Schmidt-Cassegrain “from Scratch” GExr] 2r
E{P94Phv
19 Infrared and Ultraviolet Systems erKi*GssZ
19.1 Infrared Optics u#y#(1
=
19.2 IR Objective Lenses <#wVQ\0C
19.3 IR Telescope zGdYk-H3TH
19.4 Laser Beam Expanders 0(>3L :
19,5 Ultraviolet Systems CZE!@1"<{
19.6 Microlithographic Lenses *aJO5&w<T
D|amKW7
20 Zoom Lenses ol K+|nR
20.1 Zoom Lenses _K&Hiz/'
20.2 Zoom Lenses for Point and Shoot Cameras {V pk o
20.3 A 20X Video Zoom Lens c39j|/!;Y
20.4 A Zoom Scanner Lens %LM6=nt
20.5 A Possible Zoom Lens Design Procedure MsZx 0]
`8r$b/6
21 Projection TV Lenses and Macro Lenses F9Af{*Jw?x
21.1 Projection TV Lenses 'N^*,
21.2 Macro Lenses w+r).PS}C
Qea"49R
22 Scanner/ , Laser Disk and Collimator Lenses {\vVzy,t7
22.1 Monochromatic Systems x4/{XRQ
22.2 Scanner Lenses 6$0<&')Yb
22.3 Laser Disk, Focusing, and Collimator Lenses *VmX.
6i%6u=um3
23 Tolerance Budgeting r
\[|'hA
23.1 The Tolerance Budget !^8X71W|
23.2 Additive Tolerances
2;j<{'
23.3 Establishing the Tolerance Budget N:CQ$7T{ j
Bd7B\zM
24 Formulary p_
f<@WE
24.1 Sign Conventions, Symbols, and Definitions xXc>YTK'
24.2 The Cardinal Points &CcW(-
24.3 Image Equations [V>s]c<4`o
24.4 Paraxial Ray Tracing (Surface by Surface) ;aj;(Z.p)
24.5 Invariants )t@9!V
24.6 Paraxial Ray Tracing (Component by Component) YQ.ci4.f
24.7 Two-Componenet Relationships q7<d|s
24.8 Third-Order Aberrations – Surface Contributions F,A+O+
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs qpMcVJL
24.10 Stop Shift Equations Bz <I7h
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces VdGVEDwz
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ya{`gjIlW
1Y&W>p
{%CW!Rc
Glossary U[|5:qWs
Reference <R+?>kz6
Index