"Modern Lens Design" 2nd Edition by Warren J. Smith 1+YqdDqQ
7+qKA1t^
Contents of Modern Lens Design 2nd Edition 8 VhU)fY
NFR>[L V
1 Introduction P%N)]b<c*
1.1 Lens Design Books $g/h=w@
1.2 Reference Material sV\K[4HG
1.3 Specifications |68k9rq
1.4 Lens Design <XN=v!2;
1.5 Lens Design Program Features "M3;>"`G
1.6 About This Book /'b7q y
FZLx.3k4
2 Automatic Lens Design UM<s#t`\3
2.2 The Merit Function U]@?[+I0]
2.3 Local Minima [^^ Pl:+
2.4 The Landscape Lens TwI'XMO;A
2.5 Types of Merit Function o?6m/Klw6
2.6 Stagnation &HtTh {
2.7 Generalized Simulated Annealing 0%4OmLBT
2.8 Considerations about Variables for Optimization u8M_2r
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems b};o:
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits {^1''
2.11 Spectral Weighting yc`*zLWh
2.12 How to Get Started KSHq0A6/q%
)ax>*
3 Improving a Design euVj,m
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 1:>F{g
3.2 Glass Changes ( Index and V Values ) "?<h,Hvi
3.3 Splitting Elements E+#<WK-
3.4 Separating a Cemented Doublet $2RSYI`py
3.5 Compounding an Element _x|.\j
3.6 Vignetting and Its Uses >k/cm3
3.7 Eliminating a Weak Element; the Concentric Problem )^+hm+27v
3.8 Balancing Aberrations ic"8'Rwb
3.9 The Symmetrical Principle z?( b|v
3.10 Aspheric Surfaces 1@Ju sS0^K
]5Dh<QY&.
4 Evaluation: How Good is This Design Iy&,1CI"]
4.1 The Uses of a Preliminary Evaluation v^vi *c
4.2 OPD versus Measures of Performance \4^rb?B
4.3 Geometric Blur Spot Size versus Certain Aberrations Rn]xxa'
4.4 Interpreting MTF - The Modulation Transfer Function C/'w
4.5 Fabrication Considerations )*S:C
Am_>x8z
5 Lens Design Data u6Lx3
5.1 About the Sample Lens Designs )%3T1
D/
5.2 Lens Prescriptions, Drawings, and Aberration Plots :9Jy/7/
5.3 Estimating the Potential of a Redesign {]Hv*{ ]
5.4 Scaling a Desing, Its Aberrations, and Its MTF m}\QGtJ6
5.5 Notes on the Interpretation of Ray Intercept Plots H-U_
5.6 Various Evaluation Plot eZN"t~\rX
7GWOJ^)
6 Telescope Objective 7(N+'8
6.1 The Thin Airspaced Doublet 5j6`W?|q
6.2 Merit Function for a Telescope Objective PP>6
6.3 The Design of an f/7 Cemented Doublet Telescope Objective j49Uj}:j
6.4 Spherochromatism d7
H *F
6.5 Zonal Spherical Aberration R&J?XQ
6.6 Induced Aberrations :dAd5v2f
6.7 Three-Element Objectives x3Y)l1gh
6.8 Secondary Spectrum (Apochromatic Systems) ,"XiI$Le
6.9 The Design of an f/7 Apochromatic Triplet T'@+MA) ~
6.10 The Diffractive Surface in Lens Design ]z/R?SM
6.11 A Final Note CgrQ"N5
$|.8@
nj
7 Eyepieces and Magnifiers j7k}!j_O{
7.1 Eyepieces !hhL",
7.2 A Pair of Magnifier Designs -!:5jfT"
7.3 The Simple, Classical Eyepieces ne/JC(
7.4 Design Story of an Eyepiece for a 6*30 Binocular 5<R m{
7.5 Four-Element Eyepieces s&(;
7.6 Five-Element Eyepieces 6CIzT.
7.7 Very High Index Eyepiece/Magnifier Z>Mv$F"p:
7.8 Six- and Seven-Element Eyepieces fyA-*)oHv
Zo yO[#
8 Cooke Triplet Anastigmats ^}B,0yUu'
8.1 Airspaced Triplet Anastigmats HP1QI/*v
8.2 Glass Choice G7Sw\wW
8.3 Vertex Length and Residual Aberrations ~~Ezt*lH
8.4 Other Design Considerations q*3keB;X
8.5 A Plastic, Aspheric Triplet Camera Lens ?!6Itkg
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet W%-XN
8.7 Possible Improvement to Our “Basic” Triplet d#H9jg15e
8.7 The Rear Earth (Lanthanum) Glasses E<[
s+iX
8.9 Aspherizing the Surfaces a[(OeVQ5
8.10 Increasing the Element Thickness O9(z"c
Z,A $h>Z
9 Split Triplets e12QYoh
Q>Zc
eJ;
10 The Tessar, Heliar, and Other Compounded Triplets =I@t%Y
10.1 The Classic Tessar ,T<JNd'
10.2 The Heliar/Pentac DylO;+
10.3 The Portrait Lens and the Enlarger Lens 2 HEU
10.4 Other Compounded Triplets D3X4@sM
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar DfD
>hf/
Y(.e e%;,
11 Double-Meniscus Anastigmats 8b)WOr6n
11.1 Meniscus Components . : Wf>:
11.2 The Hypergon, Totogon, and Metrogon :^v Q4/,
11.3 A Two Element Aspheric Thick Meniscus Camera Lens u ;-&r'J>
11.4 Protar, Dagor, and Convertible Lenses 2Lf,~EV
11.5 The Split Dagor )Y7H@e\1
11.6 The Dogmar A51
a/p#
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ^H3N1eC,`F
?K>)bA&l'
12 The Biotar or Double-Gauss Lens <46&R[17M
12.1 The Basic Six-Element Version K)7T]z`
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens vSH,fS-n
12.3 The Seven-Element Biotar - Split-Rear Singlet m9DFnk<D
12.4 The Seven-Element Biotar - Broken Contact Front Doublet
X8$Mzeq
12.5 The Seven-Element Biotar - One Compounded Outer Element t]$n~!
12.6 The Eight-Element Biotar ahg:mlaob
12.7 A “Doubled Double-Gauss” Relay Fo.Y6/}
d_@
E4i
13 Telephoto Lenses CO='[1"_5
13.1 The Basic Telephoto o utJ/~9;
13.2 Close-up or Macro Lenses $nO~A7
13.3 Telephoto Designs N3n]
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch \yr9j$
\9)5b8
.B:ZyTI
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses d:(Ex^^
14.1 The Reverse Telephoto Principle ES~b f
14.2 The Basic Retrofocus Lens hG?y)g\A
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses d m8t~38
@:C)^f"
15 Wide Angle Lenses with Negative Outer Lenses /?'~`4!(
eU1F7LS
16 The Petzval Lens; Head-up Display Lenses $[>{s9E
16.1 The Petzval Portrait Lens .Vbd-jr'M
16.2 The Petzval Projection Lens {dpC;jsW1
16.3 The Petzval with a Field Flattener k83K2>]
16.4 Very Height Speed Petzval Lenses mWT+15\5r(
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems `Nx@MPo
Vp/XVyL}R
17 Microscope Objectives 6]brL.eGj
17.1 General Considerations :?6HG_9X
17.2 Classic Objective Design Forms; The Aplanatic Front .xJ54Vz
17.3 Flat-Field Objectives IA2VesHb
17.4 Reflecting Objectives lYG`)#T
17.5 The Microscope Objective Designs )D+BvJ Y"
nR{<xD^
18 Mirror and Catadioptric Systems 3 7BSJ
18.1 The Good and Bad Points of Mirrors >n"0>[:4
18.2 The Classic Two-Mirror Systems ~T_|?lU`R
18.3 Catadioptric Systems dy&G~F28
18.4 Aspheric Correctors and Schmidt Systems 0cS$S Mn{
18.5 Confocal Paraboloids q`*.F#/4c
18.6 Unobscured Systems GW,EyOE+~
18.7 Design of a Schmidt-Cassegrain “from Scratch” {rc3`<%
u cpU$+
19 Infrared and Ultraviolet Systems ^4n#''wJ
19.1 Infrared Optics QLY;@-jF$
19.2 IR Objective Lenses 4 /_jrZO
19.3 IR Telescope 1K Fd
~U
19.4 Laser Beam Expanders 9O;Sn +
19,5 Ultraviolet Systems <?.eU<+O`S
19.6 Microlithographic Lenses b Hr^_ogN
duG!QS:
20 Zoom Lenses (47?lw
&
20.1 Zoom Lenses Z@zo~*o
20.2 Zoom Lenses for Point and Shoot Cameras hxoajexU
20.3 A 20X Video Zoom Lens D6bYg `
20.4 A Zoom Scanner Lens "\o#YC
20.5 A Possible Zoom Lens Design Procedure mw"FQ?bJ
_k@cs^
21 Projection TV Lenses and Macro Lenses
S_P&Fv
21.1 Projection TV Lenses :h(HKMSk1
21.2 Macro Lenses #]}Ii{1?Y
:nIMZRJ_!E
22 Scanner/ , Laser Disk and Collimator Lenses 05wkUo:9
22.1 Monochromatic Systems a=MN:s?Fc0
22.2 Scanner Lenses KhR3$|fH<
22.3 Laser Disk, Focusing, and Collimator Lenses vb>F)X?b_
w/#7G\U
23 Tolerance Budgeting "'v+*H 3
23.1 The Tolerance Budget : s
*
23.2 Additive Tolerances ED` 1)1<
23.3 Establishing the Tolerance Budget f;'*((
5M5Bm[X
24 Formulary DT]4C!dh
24.1 Sign Conventions, Symbols, and Definitions vMz|'-rm$
24.2 The Cardinal Points A%D'Z85
-
24.3 Image Equations wpZ"B+oK!
24.4 Paraxial Ray Tracing (Surface by Surface) OJe!K:
24.5 Invariants ,WyEwc]
24.6 Paraxial Ray Tracing (Component by Component) UT3Fi@
24.7 Two-Componenet Relationships vkG#G]Qs";
24.8 Third-Order Aberrations – Surface Contributions yJ?=##
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 01mu6)
24.10 Stop Shift Equations !ZTghX}D
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces +R*DE5dz
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) \TP$2i%W
gv67+Mf
{ "]!zL
Glossary 38w^="-T
Reference N@|<3R!N*e
Index