"Modern Lens Design" 2nd Edition by Warren J. Smith V`R)#G>IH%
EDq$vB
Contents of Modern Lens Design 2nd Edition _#J_$CE#
[U%ym{be^
1 Introduction oRT
1.1 Lens Design Books _gPVmGG
1.2 Reference Material ;"d ,~nLn
1.3 Specifications |c06ix;).
1.4 Lens Design {.aK{
V
1.5 Lens Design Program Features &AQg'|
1.6 About This Book fW5"4,
&prdlh=UE
2 Automatic Lens Design ]/ZA/:Oa+
2.2 The Merit Function #514a(6
2.3 Local Minima B&4fYpn
2.4 The Landscape Lens w&wA >q>&
2.5 Types of Merit Function l5ZADK4
2.6 Stagnation pIID=8RJ.
2.7 Generalized Simulated Annealing ;xW8Z<\-
2.8 Considerations about Variables for Optimization _KSfP7VU
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems #/n|@z'
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits 8X}^~ e
2.11 Spectral Weighting >zPO>.?h7T
2.12 How to Get Started MO));M)
_Hz~HoNU
3 Improving a Design X[GIOPDx
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ^ [X|As2
3.2 Glass Changes ( Index and V Values ) ~
V@xu{
3.3 Splitting Elements }j+~'O4m
3.4 Separating a Cemented Doublet 936Ff*%(l
3.5 Compounding an Element %|: ;Ti
3.6 Vignetting and Its Uses IZ4W_NN
3.7 Eliminating a Weak Element; the Concentric Problem f
pv= P
3.8 Balancing Aberrations @!z$Sp=
3.9 The Symmetrical Principle k%EWkM)?
3.10 Aspheric Surfaces ntrY =Y
J-t=1
4 Evaluation: How Good is This Design wb(*7 &eP:
4.1 The Uses of a Preliminary Evaluation A|p@\3P*A
4.2 OPD versus Measures of Performance c8^+^.=pX
4.3 Geometric Blur Spot Size versus Certain Aberrations &ui:DZAxj|
4.4 Interpreting MTF - The Modulation Transfer Function C-s>1\I
4.5 Fabrication Considerations ]4Nvh\/P9
]%gp?9wy
5 Lens Design Data ~v.jZ/h
5.1 About the Sample Lens Designs <MPeh&_3#
5.2 Lens Prescriptions, Drawings, and Aberration Plots =]=B}L`
5.3 Estimating the Potential of a Redesign "-G&=(
5.4 Scaling a Desing, Its Aberrations, and Its MTF U>/<6Wd
5.5 Notes on the Interpretation of Ray Intercept Plots @rPI$ia1~
5.6 Various Evaluation Plot >]>0KQfO
+90u!r^v
6 Telescope Objective 7[ZkM+z!
6.1 The Thin Airspaced Doublet =}~NRmmF
6.2 Merit Function for a Telescope Objective Oq #o1>
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 7ZS>1
6.4 Spherochromatism T&o,I
6.5 Zonal Spherical Aberration pBlRd{#fL
6.6 Induced Aberrations L_tjcfVo
6.7 Three-Element Objectives 9k+N3vA
6.8 Secondary Spectrum (Apochromatic Systems) l_^T&xq8
6.9 The Design of an f/7 Apochromatic Triplet ^36M0h|R
6.10 The Diffractive Surface in Lens Design pwa.q
6.11 A Final Note ]O6KKz
}*?yHJ3
7 Eyepieces and Magnifiers k%{ l4
7.1 Eyepieces 9uuta4&uI
7.2 A Pair of Magnifier Designs p@#]mVJ>9
7.3 The Simple, Classical Eyepieces 99J+$A1
7.4 Design Story of an Eyepiece for a 6*30 Binocular CkRyzF
7.5 Four-Element Eyepieces %GM>u2baw
7.6 Five-Element Eyepieces n"(7dl?
7.7 Very High Index Eyepiece/Magnifier A;odVaH7
7.8 Six- and Seven-Element Eyepieces q!ee g
&J\B\`
8 Cooke Triplet Anastigmats $8jaapNm@
8.1 Airspaced Triplet Anastigmats L30>|g
8.2 Glass Choice EC<5M5Lc
8.3 Vertex Length and Residual Aberrations Xwn3+tSIa
8.4 Other Design Considerations )V=0IZi
8.5 A Plastic, Aspheric Triplet Camera Lens KA`0g=
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet @XeEpDn]
8.7 Possible Improvement to Our “Basic” Triplet 1Wv{xML"
8.7 The Rear Earth (Lanthanum) Glasses ojX%RU
8.9 Aspherizing the Surfaces Nfr:`$k
8.10 Increasing the Element Thickness -&@]M>r@
k}X[u8A
9 Split Triplets F|,6N/;!W
>H$;Z$o*(
10 The Tessar, Heliar, and Other Compounded Triplets +-U@0&Y3M
10.1 The Classic Tessar w-r_H!-
10.2 The Heliar/Pentac =D{B}=D\IM
10.3 The Portrait Lens and the Enlarger Lens ]y.Rg{iv
10.4 Other Compounded Triplets nHnk#SAAu
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar :MK=h;5Z
R_7
6W&
11 Double-Meniscus Anastigmats i[PvDv"n
11.1 Meniscus Components Jms=YLIAA
11.2 The Hypergon, Totogon, and Metrogon ;{Xy`{Cg!
11.3 A Two Element Aspheric Thick Meniscus Camera Lens `Uv)Sf{
11.4 Protar, Dagor, and Convertible Lenses Bw6 L;Vu
11.5 The Split Dagor ,`yyR:F
11.6 The Dogmar Sobtz}A*
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens "2%>M
yji>*XG
12 The Biotar or Double-Gauss Lens {>/)5AGs
12.1 The Basic Six-Element Version }~rcrm.
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens Z{} n8b*
12.3 The Seven-Element Biotar - Split-Rear Singlet J,RDTXqn
12.4 The Seven-Element Biotar - Broken Contact Front Doublet l^ARW
E
12.5 The Seven-Element Biotar - One Compounded Outer Element ln fm0
12.6 The Eight-Element Biotar s1{[{L3
12.7 A “Doubled Double-Gauss” Relay +GYS26
A])OPqP{
13 Telephoto Lenses 3I]Fdp)'
13.1 The Basic Telephoto wDMjk2YN
13.2 Close-up or Macro Lenses 3^XVQS***
13.3 Telephoto Designs Gbn4*<N
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch U~wjR"='
:\mRtVH
+ZclGchw
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses 7u::5 W-q
14.1 The Reverse Telephoto Principle pr$~8e=c
14.2 The Basic Retrofocus Lens .A(i=!{q
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Z2#`}GI_m
~H u"yAR
15 Wide Angle Lenses with Negative Outer Lenses y+A{Y
mpAHL(
16 The Petzval Lens; Head-up Display Lenses {\EOo-&A
16.1 The Petzval Portrait Lens PS$k >_=t
16.2 The Petzval Projection Lens +RS$5NLH
16.3 The Petzval with a Field Flattener qi&D+~Gv!
16.4 Very Height Speed Petzval Lenses ZjS(ad*.2
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems srK53vKMHW
IM=+3W;ak
17 Microscope Objectives x#mtS-sw2Q
17.1 General Considerations MxTmWsaW
17.2 Classic Objective Design Forms; The Aplanatic Front ETO$9}x[
17.3 Flat-Field Objectives 5,R`@&K3D
17.4 Reflecting Objectives @cIgxp
17.5 The Microscope Objective Designs e #M iaX
B)6#Lp3
18 Mirror and Catadioptric Systems s/t11;
18.1 The Good and Bad Points of Mirrors *T1~)z}j<
18.2 The Classic Two-Mirror Systems W$'0Dc
18.3 Catadioptric Systems # $~ oe"
18.4 Aspheric Correctors and Schmidt Systems ~RInN+N#
18.5 Confocal Paraboloids 4H-j
.|e
18.6 Unobscured Systems 88 l,&2q
18.7 Design of a Schmidt-Cassegrain “from Scratch” B.*"Xfr8
'E -FO_N
19 Infrared and Ultraviolet Systems \I:.<2i
19.1 Infrared Optics 'I v_mig
19.2 IR Objective Lenses +/y]h0aa
19.3 IR Telescope DsGI/c
19.4 Laser Beam Expanders C
) ?uE'
19,5 Ultraviolet Systems #wjH4DT
19.6 Microlithographic Lenses Ly>OLI0x_
|dk[cX>
20 Zoom Lenses ")%r}:0
20.1 Zoom Lenses 7@l<?
(
20.2 Zoom Lenses for Point and Shoot Cameras pj;
I)-d/
20.3 A 20X Video Zoom Lens k. GA8=]>
20.4 A Zoom Scanner Lens utH%y\NMF|
20.5 A Possible Zoom Lens Design Procedure
%w5[*V
/M@PO"
21 Projection TV Lenses and Macro Lenses Pl78fs"L@
21.1 Projection TV Lenses v{y{sA
21.2 Macro Lenses n8u*JeN
bfdVED
22 Scanner/ , Laser Disk and Collimator Lenses 7&+Ys
22.1 Monochromatic Systems Jhy(x1%
22.2 Scanner Lenses P1V1as
22.3 Laser Disk, Focusing, and Collimator Lenses aWGon]2p
qyyq&
23 Tolerance Budgeting af'@h:
23.1 The Tolerance Budget m@\ZHbq
23.2 Additive Tolerances C-w5KW
23.3 Establishing the Tolerance Budget NY!jwb@%
nIBFk?)6
24 Formulary 9 Cvn6{
24.1 Sign Conventions, Symbols, and Definitions g_z/{1$
24.2 The Cardinal Points ;`UecLb#
24.3 Image Equations Fo}7hab
24.4 Paraxial Ray Tracing (Surface by Surface) .=<$S#x^Hb
24.5 Invariants ]db@RbaH
24.6 Paraxial Ray Tracing (Component by Component) RH[+1z8
24.7 Two-Componenet Relationships R#eg^7HfX
24.8 Third-Order Aberrations – Surface Contributions > 0.W`j(s
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs f$F*3
24.10 Stop Shift Equations Fn+?u
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces !w2gGy:I>
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ZnfNQl[
euQ.ArF
RiR:69xwR*
Glossary *e/K:k
Reference XvKFPr0~
Index