"Modern Lens Design" 2nd Edition by Warren J. Smith kAk,:a;P
$X&OGTlw^
Contents of Modern Lens Design 2nd Edition t@19a6:Co
k~?}z.g(
1 Introduction
3x9C]
1.1 Lens Design Books M[*:=C)H
1.2 Reference Material f,a4LF
1.3 Specifications $kz5)vj "
1.4 Lens Design "RX?"pB
1.5 Lens Design Program Features \M532_w
1.6 About This Book zB]T5]
ujWHO$uz!
2 Automatic Lens Design ng<`2XgU
2.2 The Merit Function ta 6WZu
2.3 Local Minima $xZk{ rK
2.4 The Landscape Lens n0i&P9@B1
2.5 Types of Merit Function =nL*/
2.6 Stagnation _0j}(Q>|H#
2.7 Generalized Simulated Annealing Zz&i0r
2.8 Considerations about Variables for Optimization
]D-48o0
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems
O}D8
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits CC-:dNb
2.11 Spectral Weighting =K>Z{%i
2.12 How to Get Started -5 W0 K}
x[^A9
3 Improving a Design 835Upj>
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 8k`zMT
3.2 Glass Changes ( Index and V Values ) 6uXYZ.A
3.3 Splitting Elements ?-84_i
3.4 Separating a Cemented Doublet B:r-')!0$#
3.5 Compounding an Element HgBg,1
3.6 Vignetting and Its Uses TxCQGzqe
3.7 Eliminating a Weak Element; the Concentric Problem "AK3t'
jF*
3.8 Balancing Aberrations dGteYt_F
3.9 The Symmetrical Principle CzEn_ZMb
3.10 Aspheric Surfaces O({_x@
Wkk Nyg,
4 Evaluation: How Good is This Design @!'H'GvA
4.1 The Uses of a Preliminary Evaluation B;~agr
4.2 OPD versus Measures of Performance 7Mv$.Z(
4.3 Geometric Blur Spot Size versus Certain Aberrations rpT<cCem1
4.4 Interpreting MTF - The Modulation Transfer Function lmcDA,7
4.5 Fabrication Considerations |YFD|
~&/Gx_KU
5 Lens Design Data uRy6~'
5.1 About the Sample Lens Designs e,*[5xQ
5.2 Lens Prescriptions, Drawings, and Aberration Plots /a|NGh%
5.3 Estimating the Potential of a Redesign c6m,oS^
5.4 Scaling a Desing, Its Aberrations, and Its MTF Xh/av[Q
5.5 Notes on the Interpretation of Ray Intercept Plots fx-*')
5.6 Various Evaluation Plot m8PB2h
KTEis!w
6 Telescope Objective kZ9pgdI
6.1 The Thin Airspaced Doublet r*wKYb
6.2 Merit Function for a Telescope Objective _MEv*Q@o
6.3 The Design of an f/7 Cemented Doublet Telescope Objective S%fBt?-Cm
6.4 Spherochromatism y#DQOY+@^#
6.5 Zonal Spherical Aberration Xt84 Evo
6.6 Induced Aberrations 8W>l(w9M
6.7 Three-Element Objectives :GYv9OG
6.8 Secondary Spectrum (Apochromatic Systems) urB3
6.9 The Design of an f/7 Apochromatic Triplet ~\G3l,4
6.10 The Diffractive Surface in Lens Design m^.C(}
6.11 A Final Note swFOh5z
B^?XE(.
7 Eyepieces and Magnifiers (`+Z'Y
7.1 Eyepieces ACYn87tq
7.2 A Pair of Magnifier Designs 1W[(+TZ&s
7.3 The Simple, Classical Eyepieces w0Y%}7
7.4 Design Story of an Eyepiece for a 6*30 Binocular ;/T-rVND
7.5 Four-Element Eyepieces :a@z53X@M
7.6 Five-Element Eyepieces <pUou
7.7 Very High Index Eyepiece/Magnifier #Vigu,zY
7.8 Six- and Seven-Element Eyepieces h,'+w
6S[D"Q94
8 Cooke Triplet Anastigmats Dg+d=I?
8.1 Airspaced Triplet Anastigmats Gnt!!1_8L
8.2 Glass Choice yo,!u\^x
8.3 Vertex Length and Residual Aberrations RAI&;"
8.4 Other Design Considerations Z|%2495\
8.5 A Plastic, Aspheric Triplet Camera Lens yWtr,
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 9%14k
8.7 Possible Improvement to Our “Basic” Triplet PZJ
4:h
8.7 The Rear Earth (Lanthanum) Glasses \=_q{
8.9 Aspherizing the Surfaces <SZO-
-+lB
8.10 Increasing the Element Thickness p\;)^O4
3og$'#6P
9 Split Triplets f {Z%:H
Wb)l8[=
10 The Tessar, Heliar, and Other Compounded Triplets i(iP}:3
10.1 The Classic Tessar :&)/vq
10.2 The Heliar/Pentac Pm(:M:a
10.3 The Portrait Lens and the Enlarger Lens (x0*(*A}
10.4 Other Compounded Triplets `j}d=zZ
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar oK:P@V6!
yGGB
11 Double-Meniscus Anastigmats lY*]&8/=
11.1 Meniscus Components ]\,uF8gg)
11.2 The Hypergon, Totogon, and Metrogon ko2j|*D6@~
11.3 A Two Element Aspheric Thick Meniscus Camera Lens F(~_L.
11.4 Protar, Dagor, and Convertible Lenses ?lN8~Ze
11.5 The Split Dagor 5qkuKF
11.6 The Dogmar _I-VWDCk
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens jZT :-w
X/K)kIi
12 The Biotar or Double-Gauss Lens PFy;qk
12.1 The Basic Six-Element Version S5u#g`I]
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens {V%O4/
12.3 The Seven-Element Biotar - Split-Rear Singlet IKzRM|/
12.4 The Seven-Element Biotar - Broken Contact Front Doublet .`>l.gmi&
12.5 The Seven-Element Biotar - One Compounded Outer Element 0/@ X!|X
12.6 The Eight-Element Biotar 355Sd;*
12.7 A “Doubled Double-Gauss” Relay ;GFB@I@
A
a} o*
13 Telephoto Lenses f
H|QAMfOu
13.1 The Basic Telephoto &_/%2qs
13.2 Close-up or Macro Lenses 2, "q_d'V
13.3 Telephoto Designs Wo9psv7.
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch x3 6 #x
0O,T=z[+>
tb?F}MEe
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses k;_KKvQ
14.1 The Reverse Telephoto Principle R =9~*9
14.2 The Basic Retrofocus Lens ~J>gVg%66
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ~K-*q{6Q
BT#=Xh
15 Wide Angle Lenses with Negative Outer Lenses G k"L%Zt)
QK!:q{
16 The Petzval Lens; Head-up Display Lenses AOlt,MNpQ
16.1 The Petzval Portrait Lens ]ZKt1@4AY
16.2 The Petzval Projection Lens =PFR{=F
16.3 The Petzval with a Field Flattener CnSX
16.4 Very Height Speed Petzval Lenses (21 W6
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems YP#AB]2\}
|[owNV>
17 Microscope Objectives Yl&tkSw46
17.1 General Considerations leES YSY:
17.2 Classic Objective Design Forms; The Aplanatic Front k'ZUBTRq!
17.3 Flat-Field Objectives '`]n_$f'
17.4 Reflecting Objectives grCO-S|j^
17.5 The Microscope Objective Designs 1KYbL8c
?l,
X!o6
18 Mirror and Catadioptric Systems O/Y\ps3r
18.1 The Good and Bad Points of Mirrors }xf='lE
18.2 The Classic Two-Mirror Systems wHOlj)CZ
18.3 Catadioptric Systems rI<nUy P?
18.4 Aspheric Correctors and Schmidt Systems 5&<d2EG6l'
18.5 Confocal Paraboloids \7t5U7v8U
18.6 Unobscured Systems E +Ujpd
18.7 Design of a Schmidt-Cassegrain “from Scratch” G=C5T(
RF4$
19 Infrared and Ultraviolet Systems 2&gd"Ak(
19.1 Infrared Optics j(%gMVu
19.2 IR Objective Lenses m+Q5vkW
19.3 IR Telescope Foe>}6~{?
19.4 Laser Beam Expanders xA&
19,5 Ultraviolet Systems XJmFJafQD
19.6 Microlithographic Lenses ,ykPQzO
'n^2|"$sH
20 Zoom Lenses &N"'7bK6n
20.1 Zoom Lenses QOT)x4!)
20.2 Zoom Lenses for Point and Shoot Cameras \m=-8KpU
20.3 A 20X Video Zoom Lens [arTx^
20.4 A Zoom Scanner Lens H~[LJ5x
20.5 A Possible Zoom Lens Design Procedure aJ6#=G61l
dNUR)X#e
21 Projection TV Lenses and Macro Lenses >P\h,1
21.1 Projection TV Lenses OB?S kR
21.2 Macro Lenses PG6[lHmi
iY
^{wi~?
22 Scanner/ , Laser Disk and Collimator Lenses Jt2,LL:G
22.1 Monochromatic Systems +z:CZ(fb
22.2 Scanner Lenses QN_)3lm
22.3 Laser Disk, Focusing, and Collimator Lenses g> ~cs_N@
K,eqD<
23 Tolerance Budgeting
mW~i
c
23.1 The Tolerance Budget cxXbo a
23.2 Additive Tolerances _{6,.TN
23.3 Establishing the Tolerance Budget ,4H;P/xsb
=5y`(0 I`U
24 Formulary lo+xo;Nd
24.1 Sign Conventions, Symbols, and Definitions ~@T+mHny
24.2 The Cardinal Points 8pYyG
| \
24.3 Image Equations ^oQekga\l
24.4 Paraxial Ray Tracing (Surface by Surface) 87^:<\pp
24.5 Invariants T&1-eq>l
24.6 Paraxial Ray Tracing (Component by Component) 4 ,p#:!
24.7 Two-Componenet Relationships DeOXM=&z
24.8 Third-Order Aberrations – Surface Contributions Ro'jM0(KE
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs CN.6E<9'kK
24.10 Stop Shift Equations Mn]}s:v
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces
?. zu2
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) XVQL.A7
O.*jR`l
T>#TDMU#Fm
Glossary B/jrYT$;m
Reference 94Xjz(
Index