"Modern Lens Design" 2nd Edition by Warren J. Smith dnU-v7k,{
#~"IlBk\
Contents of Modern Lens Design 2nd Edition ,aC}0t
X.k8w\~
1 Introduction zIjfxK
1.1 Lens Design Books 80[# 6`
1.2 Reference Material /pPH D]
1.3 Specifications h\w;SDwOk
1.4 Lens Design 'yq?xlIj
1.5 Lens Design Program Features 5~@-LXqL
1.6 About This Book >19s:+
~$5XiY8A
2 Automatic Lens Design YZ4`b-
2.2 The Merit Function 3?]81v/
2.3 Local Minima 85q/|9D
2.4 The Landscape Lens )Ak#1w&q
2.5 Types of Merit Function L'?aoRj
2.6 Stagnation ,.cR @5qI
2.7 Generalized Simulated Annealing a'?;;ZC-
2.8 Considerations about Variables for Optimization t~/:St
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems Zja3HGL
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits vf{$2rC
2.11 Spectral Weighting &l1t5 !
2.12 How to Get Started O8A1200
`@],J
3 Improving a Design H/x0'
3.1 Lens Design Tip Sheet: Standard Improvement Techniques e,_Sj(R8
3.2 Glass Changes ( Index and V Values ) {/,(F^T>2
3.3 Splitting Elements +u0of^}=
3.4 Separating a Cemented Doublet xsj,l@Ey
3.5 Compounding an Element ]$r]GVeN}H
3.6 Vignetting and Its Uses nLz;L r!
3.7 Eliminating a Weak Element; the Concentric Problem Qr$
7 U6p
3.8 Balancing Aberrations 6dr'nP
3.9 The Symmetrical Principle <m`CLVx8m
3.10 Aspheric Surfaces DX>LB$dy?
Y^!qeY
4 Evaluation: How Good is This Design i~]60M>
4.1 The Uses of a Preliminary Evaluation O@a OKk
4.2 OPD versus Measures of Performance |kPgXq6
4.3 Geometric Blur Spot Size versus Certain Aberrations jsE8=zZs
4.4 Interpreting MTF - The Modulation Transfer Function |f fHOef
4.5 Fabrication Considerations A&t8C8,
Za|iU`e\
5 Lens Design Data M1-tRF
5.1 About the Sample Lens Designs \#:
W
5.2 Lens Prescriptions, Drawings, and Aberration Plots w)+1^eW
5.3 Estimating the Potential of a Redesign ;QXg*GNAv$
5.4 Scaling a Desing, Its Aberrations, and Its MTF }'eef"DJ9
5.5 Notes on the Interpretation of Ray Intercept Plots l%"DeRp,/
5.6 Various Evaluation Plot '2lzMc>wvP
Eb[;nk?
6 Telescope Objective -J+1V{
6.1 The Thin Airspaced Doublet 6)uBUM;i
6.2 Merit Function for a Telescope Objective L?N&kzA
6.3 The Design of an f/7 Cemented Doublet Telescope Objective `D[O\ VE
6.4 Spherochromatism *mp:#'
6.5 Zonal Spherical Aberration F8-GnTxa
6.6 Induced Aberrations r4SwvxhG
6.7 Three-Element Objectives )
~=pt&+
6.8 Secondary Spectrum (Apochromatic Systems) ]j>xQm\
6.9 The Design of an f/7 Apochromatic Triplet { im?tZ,
6.10 The Diffractive Surface in Lens Design :k1?I'q%
6.11 A Final Note q x)\{By
/e>%yq<9B
7 Eyepieces and Magnifiers Q/]~`S
7.1 Eyepieces 1*hE bO
7.2 A Pair of Magnifier Designs j;`Q82V\
7.3 The Simple, Classical Eyepieces S}JOS}\^j
7.4 Design Story of an Eyepiece for a 6*30 Binocular TS6xF?
7.5 Four-Element Eyepieces m)p|NdTZc8
7.6 Five-Element Eyepieces i6_}
7.7 Very High Index Eyepiece/Magnifier -fA =&$V
7.8 Six- and Seven-Element Eyepieces 90W=v*
K^fs#7
8 Cooke Triplet Anastigmats 6}E>B{Y
8.1 Airspaced Triplet Anastigmats .yy*[56X
8.2 Glass Choice =fRS UtX
8.3 Vertex Length and Residual Aberrations ,:(s=JN+
8.4 Other Design Considerations {UP[iw$~
8.5 A Plastic, Aspheric Triplet Camera Lens d9S/_iCI
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet (7G4 v
8.7 Possible Improvement to Our “Basic” Triplet A|f6H6UUx
8.7 The Rear Earth (Lanthanum) Glasses m*_X PY
8.9 Aspherizing the Surfaces b:F;6X0~Hl
8.10 Increasing the Element Thickness )^o.H~Pv
GO"|^W
9 Split Triplets 3Y38lP:>h
B=d<L^
10 The Tessar, Heliar, and Other Compounded Triplets uG7]s]Wdz;
10.1 The Classic Tessar 9$HKP9G
10.2 The Heliar/Pentac Qa=Y?=Za
10.3 The Portrait Lens and the Enlarger Lens k^%=\c
10.4 Other Compounded Triplets @h|qL-:!vG
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar w~6UOA8}
6a,8t
11 Double-Meniscus Anastigmats 5wV J.B~s
11.1 Meniscus Components Hdew5Xn(:
11.2 The Hypergon, Totogon, and Metrogon %evb.h)
11.3 A Two Element Aspheric Thick Meniscus Camera Lens D{B?2}X
11.4 Protar, Dagor, and Convertible Lenses *`+zf7-f
11.5 The Split Dagor G"FO%3&|
11.6 The Dogmar %9>w|%+;U+
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens ,A` |jF
95'+8*YCY
12 The Biotar or Double-Gauss Lens =8 @DYz'
12.1 The Basic Six-Element Version 8HKv_vl
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens e&
`"}^X;I
12.3 The Seven-Element Biotar - Split-Rear Singlet j ^j"w(a
12.4 The Seven-Element Biotar - Broken Contact Front Doublet N0S^{j,i
12.5 The Seven-Element Biotar - One Compounded Outer Element 4O-LLH
12.6 The Eight-Element Biotar 6{.U7="
12.7 A “Doubled Double-Gauss” Relay qa^cJ1@
Uwkxc
13 Telephoto Lenses a4ViVy
13.1 The Basic Telephoto bSw^a{~)
13.2 Close-up or Macro Lenses
@!OXLM
13.3 Telephoto Designs eX#.Zt]
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ExtC\(X;
Fqw4XR_`~
8B*(P>
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses P{A})t7
14.1 The Reverse Telephoto Principle PI*@.kqR-
14.2 The Basic Retrofocus Lens ];w}?LFb
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses *S*49Hq7c
)$S=iL8(
15 Wide Angle Lenses with Negative Outer Lenses gNW+Dq|X%
d?X,od6
16 The Petzval Lens; Head-up Display Lenses tsg`c;{
16.1 The Petzval Portrait Lens ~Fh+y+g?
16.2 The Petzval Projection Lens /HRKw
D
16.3 The Petzval with a Field Flattener f\oW<2k]~
16.4 Very Height Speed Petzval Lenses :-jbIpj'
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems }MOXJb @
5 I_ :7$8
17 Microscope Objectives F 6sQeU
17.1 General Considerations s\ C ,5
17.2 Classic Objective Design Forms; The Aplanatic Front D@&xj_#\}
17.3 Flat-Field Objectives 4o}{3! m
17.4 Reflecting Objectives
cV6H!\
17.5 The Microscope Objective Designs ^Saf
z8-3o
ftRFG
18 Mirror and Catadioptric Systems U3&GRY|##
18.1 The Good and Bad Points of Mirrors |c0^7vrC
18.2 The Classic Two-Mirror Systems Q*<KX2O
18.3 Catadioptric Systems s\mA3t
18.4 Aspheric Correctors and Schmidt Systems Ua
\f]y
18.5 Confocal Paraboloids 3H!]X M
18.6 Unobscured Systems P+f}r^4}
18.7 Design of a Schmidt-Cassegrain “from Scratch” "mBM<rEn*
fCUx93,>z
19 Infrared and Ultraviolet Systems 8zHx$g
19.1 Infrared Optics s]99'Q",
19.2 IR Objective Lenses }Ecv6&G
19.3 IR Telescope %WU=Vy 4
19.4 Laser Beam Expanders c"tlNf?
19,5 Ultraviolet Systems RI8*'~ix]
19.6 Microlithographic Lenses o;6~pw%
QP\:wi
20 Zoom Lenses h.R46 :
20.1 Zoom Lenses Pi"?l[T0
20.2 Zoom Lenses for Point and Shoot Cameras k9*UBx
20.3 A 20X Video Zoom Lens Zo2+{a
20.4 A Zoom Scanner Lens >g !Z|ju
20.5 A Possible Zoom Lens Design Procedure ~OX\R"aZBW
a%c <3'
21 Projection TV Lenses and Macro Lenses % WDTnEm
21.1 Projection TV Lenses ?n{m2.H
21.2 Macro Lenses k-jFT3b$
Y$v d@Q
22 Scanner/ , Laser Disk and Collimator Lenses ;O)*!yA(GG
22.1 Monochromatic Systems yL
asoh
22.2 Scanner Lenses >8{w0hh;
22.3 Laser Disk, Focusing, and Collimator Lenses xKE=$SV(
BC!) g+8
23 Tolerance Budgeting \h'7[vkr
23.1 The Tolerance Budget hkl0N%[
23.2 Additive Tolerances J=Kv-@I>E
23.3 Establishing the Tolerance Budget .t[u_tBL
=LLpJ+
24 Formulary fLs>|Rh
24.1 Sign Conventions, Symbols, and Definitions Vq0X:<9
24.2 The Cardinal Points ZhCd**
24.3 Image Equations pmBN?<
24.4 Paraxial Ray Tracing (Surface by Surface) j_,/U^Ws|f
24.5 Invariants I*%3E.Z@g
24.6 Paraxial Ray Tracing (Component by Component) OP+*%$wR
24.7 Two-Componenet Relationships axmq/8X
24.8 Third-Order Aberrations – Surface Contributions Z{vc6oj
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs T"htWo{v>
24.10 Stop Shift Equations +mBS&FK
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces &i3SB[|
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) |e!Y
C iU
x7e0&
(7<G1$:z=
Glossary g~-IT&O
Reference e=h-}XRC
Index