"Modern Lens Design" 2nd Edition by Warren J. Smith g"3h#SMb
FVsNOU
Contents of Modern Lens Design 2nd Edition azB~>#H~
|jV4]7Luq
1 Introduction 'Ph4(Yg
1.1 Lens Design Books s8``U~D
1.2 Reference Material MjU>qx::
1.3 Specifications utwh"E&W
1.4 Lens Design $Mx.8FC +
1.5 Lens Design Program Features 1ezQzc2-R
1.6 About This Book 2597#O
RWBmQg^]X
2 Automatic Lens Design q<JI!n1O
2.2 The Merit Function 7$GP#V1r/
2.3 Local Minima
xuelo0h,
2.4 The Landscape Lens a~ REFy
2.5 Types of Merit Function ,`|KNw5
2.6 Stagnation ,XP9NHE
2.7 Generalized Simulated Annealing N13 <!QQ
2.8 Considerations about Variables for Optimization q0y?$XS
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems O!f* @
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Ro:-u7q
2.11 Spectral Weighting wCvD4C.WH
2.12 How to Get Started raJyo>xXb5
@V :b Co
3 Improving a Design fWm;cDM
H
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ,iPkx(
3.2 Glass Changes ( Index and V Values ) 9Zrn(D
3.3 Splitting Elements .yWdlq##
3.4 Separating a Cemented Doublet !s)2H/KM 8
3.5 Compounding an Element wU#Q>ut'%
3.6 Vignetting and Its Uses `bC_J,>_
3.7 Eliminating a Weak Element; the Concentric Problem iCx'`^HnP
3.8 Balancing Aberrations v!`M=0k
3.9 The Symmetrical Principle Q|G[9HBI
3.10 Aspheric Surfaces P6=|C;[
sZ4H\
4 Evaluation: How Good is This Design R4qk/@]t
4.1 The Uses of a Preliminary Evaluation 103Ik6.o
4.2 OPD versus Measures of Performance G8oQSo;D
4.3 Geometric Blur Spot Size versus Certain Aberrations G#%
=R`k/
4.4 Interpreting MTF - The Modulation Transfer Function K->p&6s
4.5 Fabrication Considerations FySK&
9) YG)A~<
5 Lens Design Data ^$#Q_Y|
5.1 About the Sample Lens Designs alu`T
c~
5.2 Lens Prescriptions, Drawings, and Aberration Plots HRw,D=
5.3 Estimating the Potential of a Redesign 3]VTQl{P
5.4 Scaling a Desing, Its Aberrations, and Its MTF &FanD
5.5 Notes on the Interpretation of Ray Intercept Plots g*]<]%Py"
5.6 Various Evaluation Plot TOuFFR
R\+$^G}#6
6 Telescope Objective |n&6z
6.1 The Thin Airspaced Doublet OIWo*
%
6.2 Merit Function for a Telescope Objective er<~dqZ}]
6.3 The Design of an f/7 Cemented Doublet Telescope Objective vMI \$E&
6.4 Spherochromatism $Y4
Ao-@
6.5 Zonal Spherical Aberration ,,iQG' *
6.6 Induced Aberrations ! 9N%=6\
6.7 Three-Element Objectives
:D/R
6.8 Secondary Spectrum (Apochromatic Systems) [,e_2<
6.9 The Design of an f/7 Apochromatic Triplet 5y~[2jB:
6.10 The Diffractive Surface in Lens Design DuFlN1Z
6.11 A Final Note D6m>>&E['
P~*fZ)\}F@
7 Eyepieces and Magnifiers <<xJ-N
7.1 Eyepieces w5nRgdboy!
7.2 A Pair of Magnifier Designs 1 h"B-x
7.3 The Simple, Classical Eyepieces ~lL($rE
7.4 Design Story of an Eyepiece for a 6*30 Binocular s-DtkO
7.5 Four-Element Eyepieces F`N*{at
7.6 Five-Element Eyepieces _8`|KY
7.7 Very High Index Eyepiece/Magnifier T<?;:MO88
7.8 Six- and Seven-Element Eyepieces {p/m+m
RU'J!-w{
8 Cooke Triplet Anastigmats Q7s1M&K
8.1 Airspaced Triplet Anastigmats Tld{b
8.2 Glass Choice Cm&itG
8.3 Vertex Length and Residual Aberrations 04"hQt{[
8.4 Other Design Considerations Owr`ip\
8.5 A Plastic, Aspheric Triplet Camera Lens dvf*w:5K!
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 4H:WpW*r
8.7 Possible Improvement to Our “Basic” Triplet AX)zSr Xn
8.7 The Rear Earth (Lanthanum) Glasses WZr~Pb9
8.9 Aspherizing the Surfaces _Dv^~e1c
8.10 Increasing the Element Thickness *SW,pHYnLb
I@B7uFj
9 Split Triplets 0Nfj}sXCWE
B+<k,ad
10 The Tessar, Heliar, and Other Compounded Triplets nZ*P:K t:
10.1 The Classic Tessar _`\INZe-G
10.2 The Heliar/Pentac GB=q}@&8p
10.3 The Portrait Lens and the Enlarger Lens 7MfT~v
10.4 Other Compounded Triplets ev3x*}d0
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar +EB##
x<l1s
11 Double-Meniscus Anastigmats \z{Y(dS
11.1 Meniscus Components x0d+cSw
11.2 The Hypergon, Totogon, and Metrogon zaZnL7ZJX
11.3 A Two Element Aspheric Thick Meniscus Camera Lens @.{
11.4 Protar, Dagor, and Convertible Lenses w9FI*30
11.5 The Split Dagor {
nV zN(
11.6 The Dogmar sHF vzE%
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens bm4W,
kpdFb7>|
12 The Biotar or Double-Gauss Lens {G}HZv%S U
12.1 The Basic Six-Element Version S|[UEU3FpB
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens J-}NFWR;t
12.3 The Seven-Element Biotar - Split-Rear Singlet =T-w.}27O
12.4 The Seven-Element Biotar - Broken Contact Front Doublet w.8~A,5}Dh
12.5 The Seven-Element Biotar - One Compounded Outer Element w# e'K-=
12.6 The Eight-Element Biotar HZ}*o%O
12.7 A “Doubled Double-Gauss” Relay Zx_m?C_2_
pR"qPSv'
13 Telephoto Lenses Y[!a82MTzn
13.1 The Basic Telephoto >=V+X"\Z
13.2 Close-up or Macro Lenses gy{a+Wbc*
13.3 Telephoto Designs ~K9U0ypH
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch zgqw*)C~
QP#Wfk(C
j1ZFsTFMWp
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses }$-VI\96
14.1 The Reverse Telephoto Principle BGX@n#:
14.2 The Basic Retrofocus Lens ng*%1;P
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses L,6Y=?
yShHFlO=
15 Wide Angle Lenses with Negative Outer Lenses z'lNO| nU
qC )VT3
16 The Petzval Lens; Head-up Display Lenses k3 l
16.1 The Petzval Portrait Lens +HX'A C
16.2 The Petzval Projection Lens }kj6hnQ
16.3 The Petzval with a Field Flattener ^NDX4d;
16.4 Very Height Speed Petzval Lenses vrzX%'
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems >v[(w1?rX
/<0D
E22
17 Microscope Objectives ;X(n3F
17.1 General Considerations Q(UGwd1
17.2 Classic Objective Design Forms; The Aplanatic Front {0 ~0
17.3 Flat-Field Objectives C t)MvZ
17.4 Reflecting Objectives N^+ww]f?
17.5 The Microscope Objective Designs E0Q"qEvU
YJ$ewK4E#.
18 Mirror and Catadioptric Systems @@wx~|%
18.1 The Good and Bad Points of Mirrors :2E1aVo4b
18.2 The Classic Two-Mirror Systems G+uiZ(p>
18.3 Catadioptric Systems 91H0mP>ki
18.4 Aspheric Correctors and Schmidt Systems FE}!bKh
18.5 Confocal Paraboloids #ja`+w}
18.6 Unobscured Systems
#-T.@a1X
18.7 Design of a Schmidt-Cassegrain “from Scratch” 1v&Fo2ML
FRFAWK<
19 Infrared and Ultraviolet Systems cO,V8#H
19.1 Infrared Optics 'c&@~O;^d
19.2 IR Objective Lenses L]d@D0.Z
19.3 IR Telescope f_ztnRw
19.4 Laser Beam Expanders }4SSo)Uv/
19,5 Ultraviolet Systems G%!\ p:w
19.6 Microlithographic Lenses 8%<`$`FyU
LUck>l\l
20 Zoom Lenses S |>$0P4W(
20.1 Zoom Lenses `{F~'t['
20.2 Zoom Lenses for Point and Shoot Cameras d&uTiH? 0
20.3 A 20X Video Zoom Lens AwUc{h l<
20.4 A Zoom Scanner Lens ^,lZ58
2
20.5 A Possible Zoom Lens Design Procedure 87KrSZ
4|N\Q=,
21 Projection TV Lenses and Macro Lenses GQ2PmnV+
21.1 Projection TV Lenses ]<gCq/V #
21.2 Macro Lenses V<4+g/
O[)]dD&'
22 Scanner/ , Laser Disk and Collimator Lenses lt6;*z[
22.1 Monochromatic Systems kQVDC,d
22.2 Scanner Lenses ShJK&70O
22.3 Laser Disk, Focusing, and Collimator Lenses [!@oRK=~
=5~F6to
23 Tolerance Budgeting -,VhS I
23.1 The Tolerance Budget S tnv>
23.2 Additive Tolerances >:E*7
23.3 Establishing the Tolerance Budget ^Opy6Bqb
+xfW`[.{
24 Formulary .l+~)$
24.1 Sign Conventions, Symbols, and Definitions ?[VpN2*
24.2 The Cardinal Points V.ji
_vX
24.3 Image Equations !?o$-+a|
24.4 Paraxial Ray Tracing (Surface by Surface) ^qO=~U!{
24.5 Invariants 7TkxvSL X
24.6 Paraxial Ray Tracing (Component by Component) Z.':&7Y
24.7 Two-Componenet Relationships vA"niO
24.8 Third-Order Aberrations – Surface Contributions }l(m5
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 6WN(22Io
24.10 Stop Shift Equations ^8NLe9~p3?
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces F|?'9s*;6G
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) =6L*!JP<
$tCcjBK\
s`=/fvf.
Glossary r1ok u0 o
Reference w,Zx5bBg%
Index