"Modern Lens Design" 2nd Edition by Warren J. Smith >Q$, } `U;
w~NQAHAvo
Contents of Modern Lens Design 2nd Edition J2$L[d^
KVVo_9S'
1 Introduction iwnctI
1.1 Lens Design Books ?v-( :OF
1.2 Reference Material brA\Fp^
1.3 Specifications hpD\,
1.4 Lens Design E|t.
3
1.5 Lens Design Program Features $r`^8/Mq3
1.6 About This Book i+$G=Z#3E
kCXQHX
2 Automatic Lens Design )Jx +R;Z
2.2 The Merit Function OS k+l
2.3 Local Minima O\h*?, )
2.4 The Landscape Lens J6eF7 fa
2.5 Types of Merit Function o~#cpU4{o
2.6 Stagnation _;G. QwHr
2.7 Generalized Simulated Annealing DD3.el}6a
2.8 Considerations about Variables for Optimization cnQ;6LtFTz
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems +/tNd2
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits la7VeFT
2.11 Spectral Weighting @ 5!Mr5;
2.12 How to Get Started G x;U 3iV
O,`#h*{N
3 Improving a Design 'u6T^Y S
3.1 Lens Design Tip Sheet: Standard Improvement Techniques >hkmL](^
3.2 Glass Changes ( Index and V Values ) b'9\j.By
3.3 Splitting Elements v+.
n9
3.4 Separating a Cemented Doublet 6>rgoT)6~
3.5 Compounding an Element WoVPp*zlX
3.6 Vignetting and Its Uses 'OIOl
3.7 Eliminating a Weak Element; the Concentric Problem [?3]+xr:
3.8 Balancing Aberrations nRYHp7`
3.9 The Symmetrical Principle >h^CC*&'pw
3.10 Aspheric Surfaces &Kuo|=f
H ?Vo#/
4 Evaluation: How Good is This Design F)ak5
4.1 The Uses of a Preliminary Evaluation Arg604V3
4.2 OPD versus Measures of Performance v~f_~v5J!
4.3 Geometric Blur Spot Size versus Certain Aberrations M#BM`2!s
4.4 Interpreting MTF - The Modulation Transfer Function q\2q3}n
4.5 Fabrication Considerations k[9~Er+
~=$0=)c
5 Lens Design Data >WfkWUb
5.1 About the Sample Lens Designs {MP8B'r-6
5.2 Lens Prescriptions, Drawings, and Aberration Plots {BkTJQ)
5.3 Estimating the Potential of a Redesign L *a:j
5.4 Scaling a Desing, Its Aberrations, and Its MTF OF [y$<jM
5.5 Notes on the Interpretation of Ray Intercept Plots ,$i2vGd
5.6 Various Evaluation Plot S$ u`)BG):
sw<mmayN
6 Telescope Objective f{
;L"*L
6.1 The Thin Airspaced Doublet KIY/nu
6.2 Merit Function for a Telescope Objective !t.
6.3 The Design of an f/7 Cemented Doublet Telescope Objective >o=O^:/L
6.4 Spherochromatism }V20~ hi
6.5 Zonal Spherical Aberration }HO3D.HE^
6.6 Induced Aberrations V}?*kx~T2C
6.7 Three-Element Objectives asDk@Gcu
6.8 Secondary Spectrum (Apochromatic Systems) J7Z`wjX1
6.9 The Design of an f/7 Apochromatic Triplet Q"o* \I
6.10 The Diffractive Surface in Lens Design p:*)rE
6.11 A Final Note Z~&$s
IUB#Vdx
7 Eyepieces and Magnifiers mGss9eZa
7.1 Eyepieces 1k=w 9
7.2 A Pair of Magnifier Designs 5<Ly^Na:
7.3 The Simple, Classical Eyepieces 9|kc$+(+6
7.4 Design Story of an Eyepiece for a 6*30 Binocular :%_*C09
7.5 Four-Element Eyepieces vJybhdvP
7.6 Five-Element Eyepieces U/hf?T;
7.7 Very High Index Eyepiece/Magnifier Ll"
Kxg
7.8 Six- and Seven-Element Eyepieces YkOl@l$D
OZDd
8 Cooke Triplet Anastigmats 9'1XZpM1
8.1 Airspaced Triplet Anastigmats vBFMne1h
8.2 Glass Choice (R'GrN>
8.3 Vertex Length and Residual Aberrations %y7&~me
8.4 Other Design Considerations }XOTK^YA
8.5 A Plastic, Aspheric Triplet Camera Lens #6fQ$x(F#j
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet Lek!5Ug
8.7 Possible Improvement to Our “Basic” Triplet |hx"yy'ux
8.7 The Rear Earth (Lanthanum) Glasses !p:kEIZ)y
8.9 Aspherizing the Surfaces w'[^RZW:j
8.10 Increasing the Element Thickness cSbyVC[r
= aO1uC|6C
9 Split Triplets \`ya08DP(
E#?Bn5-uBs
10 The Tessar, Heliar, and Other Compounded Triplets !hMD>B2Z
10.1 The Classic Tessar 5
)A(q\
10.2 The Heliar/Pentac Eo\pNz#)
10.3 The Portrait Lens and the Enlarger Lens U?@ s`.
10.4 Other Compounded Triplets fT]hpoJl
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar x9DG87P~+
bD2):U*Fzo
11 Double-Meniscus Anastigmats *5e"suS2
11.1 Meniscus Components o\TXWqt
11.2 The Hypergon, Totogon, and Metrogon p`+=)
n
11.3 A Two Element Aspheric Thick Meniscus Camera Lens aXv[~
11.4 Protar, Dagor, and Convertible Lenses ";kwh8wB
11.5 The Split Dagor teQ<v[W.
11.6 The Dogmar 1
N{unS
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Z=[qaJ{]
QL].)Vgf
12 The Biotar or Double-Gauss Lens tv]^k]n{rf
12.1 The Basic Six-Element Version `6No6.\J
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens Kia34 ~W
12.3 The Seven-Element Biotar - Split-Rear Singlet "dkDT7
12.4 The Seven-Element Biotar - Broken Contact Front Doublet %qycxEVP
12.5 The Seven-Element Biotar - One Compounded Outer Element *#n#J[
12.6 The Eight-Element Biotar EPd9'9S
12.7 A “Doubled Double-Gauss” Relay O:%,.??<%
=<BPoGs5
13 Telephoto Lenses E;o
"^[we
13.1 The Basic Telephoto zfsGf'U
13.2 Close-up or Macro Lenses ydZS^BqG
13.3 Telephoto Designs
~ERA
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch G5oBe6\C
Kggc9^ 7
! %~P[;.
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses Ye=c;0V(w
14.1 The Reverse Telephoto Principle IYG,nt!
14.2 The Basic Retrofocus Lens h,*-V 'X.k
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses (kY wD
["u:_2!4P
15 Wide Angle Lenses with Negative Outer Lenses /bSAVSKR
hZw bYvu
16 The Petzval Lens; Head-up Display Lenses \yE*nZ
16.1 The Petzval Portrait Lens LBIsj}e
16.2 The Petzval Projection Lens r\j*?m ]
16.3 The Petzval with a Field Flattener -d*zgP
16.4 Very Height Speed Petzval Lenses 5/E7@h ,
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems +Oafo|%
{ qJ(55
17 Microscope Objectives {<P{uH\l
17.1 General Considerations (teK0s;t5k
17.2 Classic Objective Design Forms; The Aplanatic Front NMvNw?]
17.3 Flat-Field Objectives /5wIbmz@I
17.4 Reflecting Objectives #xoFcjRE
17.5 The Microscope Objective Designs %wQE
lkB
F*4zC@;
18 Mirror and Catadioptric Systems p Lwtm@
18.1 The Good and Bad Points of Mirrors WJ&a9]&C
18.2 The Classic Two-Mirror Systems 7Eo;TNbb
18.3 Catadioptric Systems 1$S`>M%a
18.4 Aspheric Correctors and Schmidt Systems )JXlPU
18.5 Confocal Paraboloids (:|rCZC
18.6 Unobscured Systems -)%gMD~z1
18.7 Design of a Schmidt-Cassegrain “from Scratch” L!LhH
TN=!;SvQU
19 Infrared and Ultraviolet Systems <hBd
#J
19.1 Infrared Optics bjr()NM1
19.2 IR Objective Lenses #zed8I:w
19.3 IR Telescope OnND(YiX
19.4 Laser Beam Expanders jr2wK?LbB
19,5 Ultraviolet Systems >mW*K _~
19.6 Microlithographic Lenses G6XDPr:}
9>-]*7
20 Zoom Lenses nr?| !gj
20.1 Zoom Lenses nJ|M
20.2 Zoom Lenses for Point and Shoot Cameras |ERf3
20.3 A 20X Video Zoom Lens Q35D7wo'}
20.4 A Zoom Scanner Lens 8D&yFal
20.5 A Possible Zoom Lens Design Procedure 1EHL8@.M
K}(@Ek
21 Projection TV Lenses and Macro Lenses j2`%sBo
21.1 Projection TV Lenses Fql|0Fq
21.2 Macro Lenses S7h?tR*u
E#VF7 9L
22 Scanner/ , Laser Disk and Collimator Lenses |0nt u+
22.1 Monochromatic Systems 2o<aEn&7|e
22.2 Scanner Lenses aflBDo1c
22.3 Laser Disk, Focusing, and Collimator Lenses miB+'n"zS
/_!Ed]
23 Tolerance Budgeting {lbNYjknS
23.1 The Tolerance Budget y41~
23.2 Additive Tolerances gXvE^fE
23.3 Establishing the Tolerance Budget ly::?
Ya29t98Pk
24 Formulary Lk]W?
24.1 Sign Conventions, Symbols, and Definitions 62 9g_P)
24.2 The Cardinal Points oR~s
\Gt
24.3 Image Equations FyWrb+_0v
24.4 Paraxial Ray Tracing (Surface by Surface) TlCGP)VSj
24.5 Invariants b6d}<b9#
24.6 Paraxial Ray Tracing (Component by Component) Sv\399(
24.7 Two-Componenet Relationships Ov@vNj&
24.8 Third-Order Aberrations – Surface Contributions >^GAfvW
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs gv7@4G
24.10 Stop Shift Equations dYZB>
OS
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces W.^R/s8O%5
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) E]0Qz?
W
PM3fJhx
nP+jkNn3
Glossary UG=],\E2
Reference ,*Z/3at}5M
Index