"Modern Lens Design" 2nd Edition by Warren J. Smith `7>K1slQ}S
|QqWVelc
Contents of Modern Lens Design 2nd Edition $Q,n+ /
'Ix5,^M}B
1 Introduction +cw{aI`a8
1.1 Lens Design Books *p"O*zj
1.2 Reference Material {"\q(R0
1.3 Specifications (>r|j4$
1.4 Lens Design 5EfY9}dl
1.5 Lens Design Program Features Z#LUez;&t#
1.6 About This Book EUXV/QV{
ty9rH=1
2 Automatic Lens Design %)dI2 J^Xf
2.2 The Merit Function z,os
MS
2.3 Local Minima r)%4-XeV
2.4 The Landscape Lens @ p"NJx"
2.5 Types of Merit Function _dY:)%[]
2.6 Stagnation Cea"qNq=k
2.7 Generalized Simulated Annealing 6e&g$R
v
2.8 Considerations about Variables for Optimization C,R,:zR
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems dgm+U%E
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ~"RQ!&U
2.11 Spectral Weighting =>.DD<g"
2.12 How to Get Started \4C)~T:*
;,FT&|3o
3 Improving a Design Vzk cZK
3.1 Lens Design Tip Sheet: Standard Improvement Techniques 8\P
JSr
3.2 Glass Changes ( Index and V Values ) fyGCfM
3.3 Splitting Elements cy9N:MR(c
3.4 Separating a Cemented Doublet Ep,1}Dx
3.5 Compounding an Element .k
p$oAL
3.6 Vignetting and Its Uses ]zX\8eHp!
3.7 Eliminating a Weak Element; the Concentric Problem %d ZM9I0
3.8 Balancing Aberrations Mn-<5 1.%
3.9 The Symmetrical Principle }t}38%1i
3.10 Aspheric Surfaces R+k=Ea&x
G|<] Ma9x
4 Evaluation: How Good is This Design M3)v-"
4.1 The Uses of a Preliminary Evaluation EP/&m|o|G
4.2 OPD versus Measures of Performance +|)zwe
4.3 Geometric Blur Spot Size versus Certain Aberrations @_G` Ok4
4.4 Interpreting MTF - The Modulation Transfer Function Mi_[9ku>%
4.5 Fabrication Considerations a\.//?
'et(:}i
5 Lens Design Data VvzPQ k
5.1 About the Sample Lens Designs 9 Zs#Ky/
5.2 Lens Prescriptions, Drawings, and Aberration Plots #^"hqNwA
5.3 Estimating the Potential of a Redesign !2/l9SUi
5.4 Scaling a Desing, Its Aberrations, and Its MTF sTJJE3TBI
5.5 Notes on the Interpretation of Ray Intercept Plots `>dIF.
5.6 Various Evaluation Plot A!n~8zcmp}
:17ee
6 Telescope Objective }3bQ>whF
6.1 The Thin Airspaced Doublet 3`mC"ab /
6.2 Merit Function for a Telescope Objective S6=\r{V
6.3 The Design of an f/7 Cemented Doublet Telescope Objective @2QJm
6.4 Spherochromatism IJ+O),'
6.5 Zonal Spherical Aberration 5R$=^gE
6.6 Induced Aberrations oB hL}r
6.7 Three-Element Objectives ]Fb8.q5(Y
6.8 Secondary Spectrum (Apochromatic Systems) r[Z g 2
6.9 The Design of an f/7 Apochromatic Triplet k*A4;Bm
6.10 The Diffractive Surface in Lens Design [^cs~
n4
6.11 A Final Note -Pv P
rGQ86L<
7 Eyepieces and Magnifiers {LjK_J'
7.1 Eyepieces /5Gnb.zN)
7.2 A Pair of Magnifier Designs 8JQ<LrIt9
7.3 The Simple, Classical Eyepieces
J(H??9(s
7.4 Design Story of an Eyepiece for a 6*30 Binocular _:oMyK'
7.5 Four-Element Eyepieces $IZ*|>(
7.6 Five-Element Eyepieces O e0KAn
7.7 Very High Index Eyepiece/Magnifier M'pY-/.
7.8 Six- and Seven-Element Eyepieces yYVW"m
Pc di
8 Cooke Triplet Anastigmats 11nO<WH
8.1 Airspaced Triplet Anastigmats (gs`=H*d;
8.2 Glass Choice _N[^Hl`\
8.3 Vertex Length and Residual Aberrations {X{01j};8
8.4 Other Design Considerations UHTb61Gs
8.5 A Plastic, Aspheric Triplet Camera Lens s?1-$|*
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 0j-F6a*p'1
8.7 Possible Improvement to Our “Basic” Triplet q>Dr)x)
8.7 The Rear Earth (Lanthanum) Glasses WV9[DFU
8.9 Aspherizing the Surfaces N^nDWK
8.10 Increasing the Element Thickness s (l+{b &
[346w
<
9 Split Triplets r;@:S~
@U7U?.p
10 The Tessar, Heliar, and Other Compounded Triplets ?STI8AdO
10.1 The Classic Tessar N^@%qUvT]
10.2 The Heliar/Pentac *X"F: 7
10.3 The Portrait Lens and the Enlarger Lens uC <|T
10.4 Other Compounded Triplets D*<8e?F
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar rzc 3k~@
2/a04qA#
11 Double-Meniscus Anastigmats URj%
J/jD
11.1 Meniscus Components +4p2KYO
11.2 The Hypergon, Totogon, and Metrogon ?Mgt5by
11.3 A Two Element Aspheric Thick Meniscus Camera Lens F~11 _
11.4 Protar, Dagor, and Convertible Lenses i&AXPq>`
11.5 The Split Dagor Rqv+N]
11.6 The Dogmar j$JV(fz
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Bk@_]a
}b\ipA,~
12 The Biotar or Double-Gauss Lens 1bFEx_
12.1 The Basic Six-Element Version 3 8ls 4v3
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens Rwi5+;N
12.3 The Seven-Element Biotar - Split-Rear Singlet n^I|}u\
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ZFd{q)qe
12.5 The Seven-Element Biotar - One Compounded Outer Element *1;L,*J"|
12.6 The Eight-Element Biotar $$)<(MP3
12.7 A “Doubled Double-Gauss” Relay [jmAMF<F
[jG uO%
13 Telephoto Lenses P89Dg/P
13.1 The Basic Telephoto C$EFh4
13.2 Close-up or Macro Lenses h;mQ%9 Yd
13.3 Telephoto Designs bx'B;rZr
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch _s=Pk[e
& t @
Hr_x~n=w
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses $4fjSSB~
14.1 The Reverse Telephoto Principle &nY2u-Q
14.2 The Basic Retrofocus Lens r]K0
]h@B
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses [eTck73
[s&
y_[S
15 Wide Angle Lenses with Negative Outer Lenses U7Sl@-#|
.(.G`aKnF
16 The Petzval Lens; Head-up Display Lenses zv3<i (
16.1 The Petzval Portrait Lens 1tK6lrhj
16.2 The Petzval Projection Lens ;Ef)7GE@\[
16.3 The Petzval with a Field Flattener TQyFF/K
16.4 Very Height Speed Petzval Lenses 9/^Bj
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems ;L/T}!Dx
|Z +E(F
17 Microscope Objectives S@rsQ@PA
17.1 General Considerations Ij,?G*
17.2 Classic Objective Design Forms; The Aplanatic Front 5w-G]b
17.3 Flat-Field Objectives +[go7A$5
17.4 Reflecting Objectives trNK9@wT)
17.5 The Microscope Objective Designs I n%yMH8
IBsO
18 Mirror and Catadioptric Systems {:q9:
18.1 The Good and Bad Points of Mirrors . KSr@Gz
18.2 The Classic Two-Mirror Systems PT5ni6
18.3 Catadioptric Systems (]#
JpQ
18.4 Aspheric Correctors and Schmidt Systems 0yEyt7
~@
18.5 Confocal Paraboloids SGT-B.
18.6 Unobscured Systems mfi'>o#
18.7 Design of a Schmidt-Cassegrain “from Scratch” d%|#m)
OA5md9P;d
19 Infrared and Ultraviolet Systems ;Z<*.f'^fc
19.1 Infrared Optics Ns] 9-D
19.2 IR Objective Lenses ri_6wbPp
19.3 IR Telescope b|C,b"$N0
19.4 Laser Beam Expanders 0GLB3I >
19,5 Ultraviolet Systems .J!
$,O@
19.6 Microlithographic Lenses TuhL:
;`Ch2b1+
20 Zoom Lenses 0}3'h#33=
20.1 Zoom Lenses ~$`YzK^*X
20.2 Zoom Lenses for Point and Shoot Cameras J!gWRw5
20.3 A 20X Video Zoom Lens {?M*ZRO'
20.4 A Zoom Scanner Lens Hw-oh?=
20.5 A Possible Zoom Lens Design Procedure IF21T
eEb1R}@
21 Projection TV Lenses and Macro Lenses /3HWP`<x
21.1 Projection TV Lenses fP4IOlHkE
21.2 Macro Lenses Zvw3C%In
XhkL))FcG
22 Scanner/ , Laser Disk and Collimator Lenses dg@/HLZ
22.1 Monochromatic Systems YedipYG9;
22.2 Scanner Lenses W}i$f -K
22.3 Laser Disk, Focusing, and Collimator Lenses g KY
,G
544I#!
23 Tolerance Budgeting ]d;/6R+Vs
23.1 The Tolerance Budget S:T>oFUot
23.2 Additive Tolerances g?Ty5~:lq
23.3 Establishing the Tolerance Budget xa axj
5m;wMW<
24 Formulary u>Kvub
24.1 Sign Conventions, Symbols, and Definitions &(1NOyX&
24.2 The Cardinal Points hA19:H=7R0
24.3 Image Equations
vX )Y%I
24.4 Paraxial Ray Tracing (Surface by Surface) #6Ph"\G/
24.5 Invariants X-^Oz@.>
24.6 Paraxial Ray Tracing (Component by Component) ^mb*w)-p?
24.7 Two-Componenet Relationships |?b"my$g$
24.8 Third-Order Aberrations – Surface Contributions 0-O.*Q^
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs KFrmH
24.10 Stop Shift Equations !a&F:Fbm
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces { J%$.D(/
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) B{u.Yc:
Sk%|-T(d$
zL{@LHP
Glossary `Wt~6D
e
Reference f
}e7g d]M
Index