"Modern Lens Design" 2nd Edition by Warren J. Smith 5?w.rcN[j
PYu$1o9+N
Contents of Modern Lens Design 2nd Edition \X5 3|Y;=
3-iD.IAUm@
1 Introduction d+0^u(gc!8
1.1 Lens Design Books ?,>5[Ha^?
1.2 Reference Material Ch t%uzb,
1.3 Specifications #~S>K3(
1.4 Lens Design -R :X<eb
1.5 Lens Design Program Features \ADLMj`F|
1.6 About This Book T{tn.sT
Q(e{~
]*
2 Automatic Lens Design 'AWp6L @
2.2 The Merit Function x}|+sS,g
2.3 Local Minima >L=;"+B0U&
2.4 The Landscape Lens lov%V*tL
2.5 Types of Merit Function SB/3jH
2.6 Stagnation z0
\N{rP&
2.7 Generalized Simulated Annealing I|T7+{5z
2.8 Considerations about Variables for Optimization -=a[J;'q
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems YQ7@D]#
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits V'I T1~
2.11 Spectral Weighting e1UITjy
2.12 How to Get Started *{|$FQnR>(
:v)6gz(p
3 Improving a Design [S0mY["
3.1 Lens Design Tip Sheet: Standard Improvement Techniques *gDl~qNRoS
3.2 Glass Changes ( Index and V Values ) 6OtVaT=}<O
3.3 Splitting Elements n]iyFZ`9
3.4 Separating a Cemented Doublet + {e`]t>_
3.5 Compounding an Element @Z q[e
3.6 Vignetting and Its Uses #)]E8=}
3.7 Eliminating a Weak Element; the Concentric Problem +`Pmq}ey
3.8 Balancing Aberrations c0ZaFJ
3.9 The Symmetrical Principle dlR_ckp
3.10 Aspheric Surfaces r^5jh1
(;ADW+.`J
4 Evaluation: How Good is This Design 8kH<$9
4.1 The Uses of a Preliminary Evaluation uY]0dyI
4.2 OPD versus Measures of Performance V^sc1ak1Q
4.3 Geometric Blur Spot Size versus Certain Aberrations i?-Y
4.4 Interpreting MTF - The Modulation Transfer Function 0>FE%
4.5 Fabrication Considerations 'Wp@b678
;MPKJS68@
5 Lens Design Data RG1\=J$:E
5.1 About the Sample Lens Designs o(fy d)t
5.2 Lens Prescriptions, Drawings, and Aberration Plots 3[VNsX
5.3 Estimating the Potential of a Redesign V:Mk)8Gf|
5.4 Scaling a Desing, Its Aberrations, and Its MTF d}+W"j;
5.5 Notes on the Interpretation of Ray Intercept Plots 5\'AD^{
5.6 Various Evaluation Plot ,hvc``j
S8
]\dHU.i
6 Telescope Objective J@Yj\9U
6.1 The Thin Airspaced Doublet gr+Pl>C{
6.2 Merit Function for a Telescope Objective ]r959+\$
6.3 The Design of an f/7 Cemented Doublet Telescope Objective x.UaQ |F
6.4 Spherochromatism h.}u?{
6.5 Zonal Spherical Aberration ) EXJ
6.6 Induced Aberrations `0@z"D5c
6.7 Three-Element Objectives q3+8]-9|5
6.8 Secondary Spectrum (Apochromatic Systems)
KGT3|)QN
6.9 The Design of an f/7 Apochromatic Triplet q.T:0|
6.10 The Diffractive Surface in Lens Design ="(>>C1-
6.11 A Final Note !y[3]8Xxv
x7$ax79ly
7 Eyepieces and Magnifiers kOI
!~Qk
7.1 Eyepieces 'RLOV
7.2 A Pair of Magnifier Designs `D2Mss$!
7.3 The Simple, Classical Eyepieces 6tm\L
7.4 Design Story of an Eyepiece for a 6*30 Binocular S{:Cu}o
7.5 Four-Element Eyepieces Nog(VN4I&
7.6 Five-Element Eyepieces I`^Y Abnb
7.7 Very High Index Eyepiece/Magnifier ?cK]C2Ak
7.8 Six- and Seven-Element Eyepieces N RSU+D-z
bV6V02RF
8 Cooke Triplet Anastigmats qqvF-mDN
8.1 Airspaced Triplet Anastigmats S>t>6&A
8.2 Glass Choice _#pnjo
8.3 Vertex Length and Residual Aberrations %l|\of7P2}
8.4 Other Design Considerations #>[wD#XJV
8.5 A Plastic, Aspheric Triplet Camera Lens G~!C=l
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet l$M +.GB<
8.7 Possible Improvement to Our “Basic” Triplet AC4 l<:Yh
8.7 The Rear Earth (Lanthanum) Glasses 0( //D;j
8.9 Aspherizing the Surfaces ]sL45k2W
8.10 Increasing the Element Thickness rQj~[Y.c
BIfi:7I;Q
9 Split Triplets +tUQ
S#2[%o
10 The Tessar, Heliar, and Other Compounded Triplets '5rUe\k
10.1 The Classic Tessar Gru ALx7
10.2 The Heliar/Pentac X| <yq
10.3 The Portrait Lens and the Enlarger Lens ;k}H(QI
10.4 Other Compounded Triplets mx}E$b$<CY
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar L|\Diap
E{>`MNj
11 Double-Meniscus Anastigmats KlO(o#&N
11.1 Meniscus Components Ekjf^Uo
11.2 The Hypergon, Totogon, and Metrogon F1c&0*_A
11.3 A Two Element Aspheric Thick Meniscus Camera Lens !G+u j(
11.4 Protar, Dagor, and Convertible Lenses KyLp?!|>
11.5 The Split Dagor c#pj :f*H
11.6 The Dogmar GYoseqZM
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens fA^SD"xf
r\xXU~$9v
12 The Biotar or Double-Gauss Lens ~ 5"J(
12.1 The Basic Six-Element Version 7zGMkl
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens Pz`hX$
12.3 The Seven-Element Biotar - Split-Rear Singlet /^4"Qv\@/
12.4 The Seven-Element Biotar - Broken Contact Front Doublet aD|Yo
12.5 The Seven-Element Biotar - One Compounded Outer Element YoAg
12.6 The Eight-Element Biotar Ub)M*Cq0(o
12.7 A “Doubled Double-Gauss” Relay p(?3
V
/b{HG7i\
13 Telephoto Lenses xa#gWIP*
13.1 The Basic Telephoto plXG[1;&G
13.2 Close-up or Macro Lenses !01i%W'
13.3 Telephoto Designs euZI`*0
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ML=z<u+
d?7BxYaa
5;Ia$lm=y
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses sykFSPy`'
14.1 The Reverse Telephoto Principle {^m5#f 0"
14.2 The Basic Retrofocus Lens 61:9(*4~!F
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses x'i0KF
MaErx\
15 Wide Angle Lenses with Negative Outer Lenses P)1EA;
H,|YLKg-|
16 The Petzval Lens; Head-up Display Lenses g1V)$s7
16.1 The Petzval Portrait Lens +^gO/0
16.2 The Petzval Projection Lens %wW'!p-<
16.3 The Petzval with a Field Flattener f3n~{a,[
16.4 Very Height Speed Petzval Lenses or.\)(m#(
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems xA-jvu9@
-tyaE
17 Microscope Objectives }Vl^EAR
17.1 General Considerations e5OVq
,
17.2 Classic Objective Design Forms; The Aplanatic Front FL&dv
17.3 Flat-Field Objectives P`
]ps?l
17.4 Reflecting Objectives =|V"#3$f
17.5 The Microscope Objective Designs OjATSmZ@@
@C_ =*
18 Mirror and Catadioptric Systems 4J}3,+
18.1 The Good and Bad Points of Mirrors Q>%E`h
18.2 The Classic Two-Mirror Systems b1)\Zi
18.3 Catadioptric Systems wY`#$)O0*
18.4 Aspheric Correctors and Schmidt Systems OG}KqG!n
18.5 Confocal Paraboloids f?-J#x)
18.6 Unobscured Systems PbN3;c3
18.7 Design of a Schmidt-Cassegrain “from Scratch” 4(|yD;
vJThU$s-
19 Infrared and Ultraviolet Systems e~
BJvZ}Q
19.1 Infrared Optics {(0Id !
19.2 IR Objective Lenses XtzOFx/
19.3 IR Telescope !Bj^i
cR
19.4 Laser Beam Expanders Gh+f1)\FA"
19,5 Ultraviolet Systems A]xCF{*)&
19.6 Microlithographic Lenses ]bu9-X&T&
DKHM\yt
20 Zoom Lenses :D4];d>1
20.1 Zoom Lenses PW)8aLU
20.2 Zoom Lenses for Point and Shoot Cameras pN+I]NgQ
20.3 A 20X Video Zoom Lens # JFYws
20.4 A Zoom Scanner Lens TrQm]9 @
20.5 A Possible Zoom Lens Design Procedure ~'{VaYk]v
}5hZo%w[n
21 Projection TV Lenses and Macro Lenses dk:xnX%
21.1 Projection TV Lenses Om6Mmoqh
21.2 Macro Lenses 2-7Z(7G{ F
Wl
TpX`
22 Scanner/ , Laser Disk and Collimator Lenses C*Xik9n
22.1 Monochromatic Systems wPQ&Di*X}
22.2 Scanner Lenses nF|Oy0
22.3 Laser Disk, Focusing, and Collimator Lenses UOJ*a1BM
h[y*CzG
23 Tolerance Budgeting /N%zwj/*
23.1 The Tolerance Budget pJ6Jx(
23.2 Additive Tolerances C (U
23.3 Establishing the Tolerance Budget S*s:4uf
4v>o%
24 Formulary jm+blB^%K
24.1 Sign Conventions, Symbols, and Definitions T+(M8qb
24.2 The Cardinal Points G g(NGT
24.3 Image Equations ?-S8yqe
24.4 Paraxial Ray Tracing (Surface by Surface) $':JI#
24.5 Invariants ^vG=|X|)c
24.6 Paraxial Ray Tracing (Component by Component) ZIe +
24.7 Two-Componenet Relationships >~^`5a`$uI
24.8 Third-Order Aberrations – Surface Contributions EoKo
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Fr2kbQTg;
24.10 Stop Shift Equations [\a:4vDAbi
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces HM
90Sb
24.12 Conversion of Aberrations to Wavefront Deformation (OPD)
}Zt.*%
jQ)L pjS1
)# p.`J
Glossary 9p4%8WhJ
Reference OelU
D/[$
Index