"Modern Lens Design" 2nd Edition by Warren J. Smith N:q\i57x
ds2%i
Contents of Modern Lens Design 2nd Edition xtBu]I)%
B*(BsXQLY
1 Introduction HLkI?mW<
1.1 Lens Design Books A$M8w9
1.2 Reference Material 9=q& SG
1.3 Specifications >4#:qIU
1.4 Lens Design D 0Mxl?S?
1.5 Lens Design Program Features G?v!Uv8O
1.6 About This Book 7gcR/HNeF
c@2a)S8Y]
2 Automatic Lens Design D;&\)
2.2 The Merit Function *_Vv(H&
2.3 Local Minima ypgM&"eR
2.4 The Landscape Lens u`ryCZo#g
2.5 Types of Merit Function !w}b}+]GB
2.6 Stagnation ?[uHRBR'
2.7 Generalized Simulated Annealing +T&YYO8>5
2.8 Considerations about Variables for Optimization km*Y#`{
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems x6)qs-
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits jGi{:} `lB
2.11 Spectral Weighting ,5V6=pr$
2.12 How to Get Started le'
Kp
V
Er;q s *f
3 Improving a Design ,k_"T.w
3.1 Lens Design Tip Sheet: Standard Improvement Techniques Q6HghG
3.2 Glass Changes ( Index and V Values ) &b`'RZe
3.3 Splitting Elements nE +H)%p
3.4 Separating a Cemented Doublet ufe|I
3.5 Compounding an Element Wco2i m
3.6 Vignetting and Its Uses b}DC|?~M
3.7 Eliminating a Weak Element; the Concentric Problem -u(,*9]cJ*
3.8 Balancing Aberrations DZ @B9<Zz{
3.9 The Symmetrical Principle m_;fj~m
3.10 Aspheric Surfaces 0hhxTOp
-K lR":
4 Evaluation: How Good is This Design {sf
,(.W
4.1 The Uses of a Preliminary Evaluation -wrVEH8
4.2 OPD versus Measures of Performance 5S8>y7knQ
4.3 Geometric Blur Spot Size versus Certain Aberrations Ph%{h"
4.4 Interpreting MTF - The Modulation Transfer Function wAw1K 2d
4.5 Fabrication Considerations s1E 0atT
Yj'9|4%+|
5 Lens Design Data c9G%;U)
5.1 About the Sample Lens Designs {_-T! yb
5.2 Lens Prescriptions, Drawings, and Aberration Plots z{|0W!nHJ
5.3 Estimating the Potential of a Redesign B~E">}=!
5.4 Scaling a Desing, Its Aberrations, and Its MTF I eJI-lo
5.5 Notes on the Interpretation of Ray Intercept Plots o">~ObR
5.6 Various Evaluation Plot 7~FHn'xt
z"T+J?V/
6 Telescope Objective OPzudO
6.1 The Thin Airspaced Doublet &TY74w*
6.2 Merit Function for a Telescope Objective !d<R=L
6.3 The Design of an f/7 Cemented Doublet Telescope Objective f=k#o2
6.4 Spherochromatism ZG0^O"B0
6.5 Zonal Spherical Aberration bZ1*:k2
6.6 Induced Aberrations `kJ)E;v;3
6.7 Three-Element Objectives :'B(DzUR
6.8 Secondary Spectrum (Apochromatic Systems) _7\`xU
6.9 The Design of an f/7 Apochromatic Triplet $cK}Tlq
6.10 The Diffractive Surface in Lens Design @I-,5F|r
6.11 A Final Note 0VcHz$
6
#Lpw8b6
7 Eyepieces and Magnifiers L{P'mG=4
7.1 Eyepieces ZM})l9_o"
7.2 A Pair of Magnifier Designs dVYY:1PS
7.3 The Simple, Classical Eyepieces "5L?RkFi\
7.4 Design Story of an Eyepiece for a 6*30 Binocular '5Yzo^R;
7.5 Four-Element Eyepieces G"`
}"T0}
7.6 Five-Element Eyepieces u.|%@
7.7 Very High Index Eyepiece/Magnifier NuPlrCy;
7.8 Six- and Seven-Element Eyepieces +Eh.PWEe
nKzm.D gt_
8 Cooke Triplet Anastigmats 41Z@_J|&
8.1 Airspaced Triplet Anastigmats Cyd/HTNh<
8.2 Glass Choice bJetqF6n
8.3 Vertex Length and Residual Aberrations l99Lxgx=
8.4 Other Design Considerations Gn=b_!
8.5 A Plastic, Aspheric Triplet Camera Lens |,p"<a!+{w
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet {=3A@/vM
8.7 Possible Improvement to Our “Basic” Triplet Ij7P-5=<
8.7 The Rear Earth (Lanthanum) Glasses gkO^J{_@q
8.9 Aspherizing the Surfaces cFw-JM<
8.10 Increasing the Element Thickness >STthPO
EP#2it]0]
9 Split Triplets )-_^vB
#<< el;n
10 The Tessar, Heliar, and Other Compounded Triplets {7ji m
10.1 The Classic Tessar g%l ,a3"
10.2 The Heliar/Pentac $*942. =Q
10.3 The Portrait Lens and the Enlarger Lens wYf\!]}'
10.4 Other Compounded Triplets S?d<P
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar 0t?o6e
*0xL(
11 Double-Meniscus Anastigmats ppRmC,0f^
11.1 Meniscus Components y
Ne?a{
11.2 The Hypergon, Totogon, and Metrogon f]8MdYX(
11.3 A Two Element Aspheric Thick Meniscus Camera Lens y62f{ks_/
11.4 Protar, Dagor, and Convertible Lenses s-#EV
11.5 The Split Dagor M i& ;1!bg
11.6 The Dogmar z
)'9[t
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens
-DdHl8
6&os`!
12 The Biotar or Double-Gauss Lens P !i_?M
12.1 The Basic Six-Element Version (O{OQk;CF
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 0TmEa59P
12.3 The Seven-Element Biotar - Split-Rear Singlet VIz(@
12.4 The Seven-Element Biotar - Broken Contact Front Doublet R>O_2`c
12.5 The Seven-Element Biotar - One Compounded Outer Element V?j,$LixY
12.6 The Eight-Element Biotar yuZLsH
12.7 A “Doubled Double-Gauss” Relay UqI #F
(M$0'BV0
13 Telephoto Lenses !CUl1L1DSi
13.1 The Basic Telephoto L]H'$~xx*
13.2 Close-up or Macro Lenses [*^.$s(
13.3 Telephoto Designs &N^~=y^`C'
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch 2.aCo, Kb;
>`0U2K
o6MFMA+vi
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses %PYO9:n
14.1 The Reverse Telephoto Principle @4*:qj?
14.2 The Basic Retrofocus Lens KAClV%jP
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 4C =W~6~
GK}52,NM
15 Wide Angle Lenses with Negative Outer Lenses S/XU4i:aV
QEs$9a5TE
16 The Petzval Lens; Head-up Display Lenses =\< 7+nv
16.1 The Petzval Portrait Lens Ab ,^y
16.2 The Petzval Projection Lens RqTO3Kf
16.3 The Petzval with a Field Flattener ML_VD*t9
16.4 Very Height Speed Petzval Lenses m`-);y
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems N1ipK9a
"@&TC"YG0
17 Microscope Objectives ekhv.;N~
17.1 General Considerations *)Qv;'U=rn
17.2 Classic Objective Design Forms; The Aplanatic Front %*gf_GeM
17.3 Flat-Field Objectives XL n9NBT4K
17.4 Reflecting Objectives b]]8Vs)'
17.5 The Microscope Objective Designs uI-T]N:W8x
l1 Kv`v\
18 Mirror and Catadioptric Systems
77@N79lqO
18.1 The Good and Bad Points of Mirrors m=01V5_
18.2 The Classic Two-Mirror Systems BX?DI-o^h
18.3 Catadioptric Systems *DPX4P
18.4 Aspheric Correctors and Schmidt Systems *SNdU^!
18.5 Confocal Paraboloids 3^UdB9j;
18.6 Unobscured Systems n)kbQ]
18.7 Design of a Schmidt-Cassegrain “from Scratch” ~</FF'Xz
N]+6<
19 Infrared and Ultraviolet Systems vUpAW[[
19.1 Infrared Optics M-^I! C
19.2 IR Objective Lenses &'z_:W m
19.3 IR Telescope zTg\\z;
19.4 Laser Beam Expanders AT"gRCU$4
19,5 Ultraviolet Systems 3s%?)z
19.6 Microlithographic Lenses ""-wM~^D
0VNLhM(LM
20 Zoom Lenses X+;[Gc}(W
20.1 Zoom Lenses \1<'XVS
20.2 Zoom Lenses for Point and Shoot Cameras TwkT|Piw
S
20.3 A 20X Video Zoom Lens DO:,PZX
20.4 A Zoom Scanner Lens |R9Lben',
20.5 A Possible Zoom Lens Design Procedure kG>jb!e@(
GY]P(NU
21 Projection TV Lenses and Macro Lenses ^#:;6^Su
21.1 Projection TV Lenses y&$n[j
21.2 Macro Lenses ^>IP"k F
AY/.vyS
22 Scanner/ , Laser Disk and Collimator Lenses 1q7&WG
22.1 Monochromatic Systems cdMSC7l!
22.2 Scanner Lenses /w?e(v<
22.3 Laser Disk, Focusing, and Collimator Lenses a4,V(Hlm
.==D?#bn
23 Tolerance Budgeting 9z#8K
zXg
23.1 The Tolerance Budget L)JB^cxf
23.2 Additive Tolerances G WIsT\J
23.3 Establishing the Tolerance Budget fB$a)~
~71U s
24 Formulary P=n_wE
24.1 Sign Conventions, Symbols, and Definitions [inlxJD
24.2 The Cardinal Points juHL$SGC
24.3 Image Equations =*\.zr
24.4 Paraxial Ray Tracing (Surface by Surface) g"P%sA/E+
24.5 Invariants M|DMoi8x
24.6 Paraxial Ray Tracing (Component by Component) Sb`[+i'`
24.7 Two-Componenet Relationships s/"bH3Ob9v
24.8 Third-Order Aberrations – Surface Contributions +_]Ui| l
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs \L*%?~
24.10 Stop Shift Equations \jC) ;mk
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ['mpxtG
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) d1D
f`
layxtECP(
o,rF 15
Glossary *wTX
Reference ^N={4'G)
Index