"Modern Lens Design" 2nd Edition by Warren J. Smith sn{tra
fk{0d
Contents of Modern Lens Design 2nd Edition iqPBsIW
2*1ft>Uty
1 Introduction orfp>B) 0
1.1 Lens Design Books "pvH0"Q*
1.2 Reference Material +B"0{>n}F
1.3 Specifications J2M(1g)t9
1.4 Lens Design ]?K.
S6
1.5 Lens Design Program Features ar^i|`D
1.6 About This Book ,={t8lN
g0&\l}&%U
2 Automatic Lens Design ]Kh2;>=
Xj
2.2 The Merit Function ,hRN\Kt)p
2.3 Local Minima 1[PMDS_X
2.4 The Landscape Lens 'jfRt-_-
2.5 Types of Merit Function !mnUdR|>(
2.6 Stagnation DBgMC"_
2.7 Generalized Simulated Annealing r>t1 _b+nu
2.8 Considerations about Variables for Optimization KoBW}x9Jp
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems [hh/1[
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Q8nId<\(
2.11 Spectral Weighting d)ahF[82
2.12 How to Get Started K5 KyG
iiC!|`k"
3 Improving a Design GbZ;#^S
3.1 Lens Design Tip Sheet: Standard Improvement Techniques z5 m>H;P
3.2 Glass Changes ( Index and V Values ) p]T"|! d
3.3 Splitting Elements 1hmc,c
3.4 Separating a Cemented Doublet [f{VIE*?%
3.5 Compounding an Element @cD uhK"U}
3.6 Vignetting and Its Uses diT=x52
3.7 Eliminating a Weak Element; the Concentric Problem n/Dp"4H%q
3.8 Balancing Aberrations I4c!m_sr
3.9 The Symmetrical Principle WO*9+\[v
3.10 Aspheric Surfaces #x@ eDnb_
5iX!
lAFJ
4 Evaluation: How Good is This Design =o 7}]k7
4.1 The Uses of a Preliminary Evaluation lB;FUck9
4.2 OPD versus Measures of Performance .*/Fucr
4.3 Geometric Blur Spot Size versus Certain Aberrations 9
c3E+
4.4 Interpreting MTF - The Modulation Transfer Function #JW+~FU`
4.5 Fabrication Considerations +j/~Af p5f
F-gE<<
5 Lens Design Data svhI3"r
5.1 About the Sample Lens Designs ko\):DN
5.2 Lens Prescriptions, Drawings, and Aberration Plots zJN7<sv
5.3 Estimating the Potential of a Redesign -ysn&d\rV
5.4 Scaling a Desing, Its Aberrations, and Its MTF A%bCMP
5.5 Notes on the Interpretation of Ray Intercept Plots , H
kj1x
5.6 Various Evaluation Plot !{%: qQiA
aaW]JmRb
6 Telescope Objective dJk9@u
6.1 The Thin Airspaced Doublet 6,b"
6.2 Merit Function for a Telescope Objective dA~
3>f*b_
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 2I'~2o
6.4 Spherochromatism YwDt.6(+,
6.5 Zonal Spherical Aberration MgMD\
6.6 Induced Aberrations 42C<1@>zO
6.7 Three-Element Objectives YTaLjITG
6.8 Secondary Spectrum (Apochromatic Systems) k!L@GQ
6.9 The Design of an f/7 Apochromatic Triplet *%FA:Y
6.10 The Diffractive Surface in Lens Design gE7L L=x
6.11 A Final Note (P|pRVO
;{Ux_JEg
7 Eyepieces and Magnifiers t*S."
q
7.1 Eyepieces M[]A2'fS
7.2 A Pair of Magnifier Designs ['qnn|
7.3 The Simple, Classical Eyepieces J$ut_N):N
7.4 Design Story of an Eyepiece for a 6*30 Binocular \,G#<>S
7.5 Four-Element Eyepieces evuZY X@
7.6 Five-Element Eyepieces @mQ:7-,~
7.7 Very High Index Eyepiece/Magnifier OjE`1h\
7.8 Six- and Seven-Element Eyepieces sy5 Fn~\R
2\<.0
8 Cooke Triplet Anastigmats %
ZU/x
d
8.1 Airspaced Triplet Anastigmats IVxWxM*N<
8.2 Glass Choice 5]Ajf;W\
8.3 Vertex Length and Residual Aberrations $&I'o
8.4 Other Design Considerations }?8uH/+ZA
8.5 A Plastic, Aspheric Triplet Camera Lens W7No ls{
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet L V{Q,DrP
8.7 Possible Improvement to Our “Basic” Triplet vIGw6BJI
8.7 The Rear Earth (Lanthanum) Glasses 'fd1Pj9~$
8.9 Aspherizing the Surfaces J5M+FwZq
8.10 Increasing the Element Thickness tOl e>]
a:STQk V
9 Split Triplets cI0 ]}S
e&<yX
10 The Tessar, Heliar, and Other Compounded Triplets 3,X/,'
10.1 The Classic Tessar ,El!fgL
10.2 The Heliar/Pentac Q9F)
10.3 The Portrait Lens and the Enlarger Lens `TLzVB-j3
10.4 Other Compounded Triplets u,.3
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar p<Z3tD;Z
^C)n$L>C0
11 Double-Meniscus Anastigmats ,L>
ar)B
11.1 Meniscus Components = "ts`>
11.2 The Hypergon, Totogon, and Metrogon q>!L6h5]t
11.3 A Two Element Aspheric Thick Meniscus Camera Lens <[ Xw)/#
11.4 Protar, Dagor, and Convertible Lenses JH,/jR
11.5 The Split Dagor z`@^5_
11.6 The Dogmar <U Zd;e@
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens 1`0#HSO
hf6f.Z
12 The Biotar or Double-Gauss Lens z,SYw &S
12.1 The Basic Six-Element Version <i\A_qqc/
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens _o3e]{
12.3 The Seven-Element Biotar - Split-Rear Singlet W~n.Xeu{C
12.4 The Seven-Element Biotar - Broken Contact Front Doublet R[tC^]ai
12.5 The Seven-Element Biotar - One Compounded Outer Element -NGK@Yk22
12.6 The Eight-Element Biotar k`KGB
12.7 A “Doubled Double-Gauss” Relay OR6ML-|
fT\:V5-
13 Telephoto Lenses {lG@hN'
13.1 The Basic Telephoto OTWkUB{
13.2 Close-up or Macro Lenses ;i uQ?MR3
13.3 Telephoto Designs t0&@h\K
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch Qq& W3
XUMX*
NcS.49
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses {^)70Vz>PE
14.1 The Reverse Telephoto Principle DPgm%Xq9(!
14.2 The Basic Retrofocus Lens Ol/\t
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 3L>IX8_
Pz_Oe,{.I
15 Wide Angle Lenses with Negative Outer Lenses h+~P"i}&\
&jA\hg#9
16 The Petzval Lens; Head-up Display Lenses 0rSIfYZa
16.1 The Petzval Portrait Lens <E|s\u
16.2 The Petzval Projection Lens >zvY\{WY
16.3 The Petzval with a Field Flattener +]xFoH
16.4 Very Height Speed Petzval Lenses 0Wvq>R.(]7
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems Ue:z1p;g
>T3H qYX5W
17 Microscope Objectives l*aj#%ha
17.1 General Considerations Z [Xa%~5>5
17.2 Classic Objective Design Forms; The Aplanatic Front FVsj;
17.3 Flat-Field Objectives cc=gCE
17.4 Reflecting Objectives UM%o\BiO
17.5 The Microscope Objective Designs FwAKP>6 *
\kIMDg3}
18 Mirror and Catadioptric Systems t
!`Jse>
18.1 The Good and Bad Points of Mirrors CBT>"sYE1
18.2 The Classic Two-Mirror Systems ^ZeJ[t&!#
18.3 Catadioptric Systems 9v)%dO.
18.4 Aspheric Correctors and Schmidt Systems 0BPMmk
18.5 Confocal Paraboloids 7v}x?I
18.6 Unobscured Systems WKM)*@#,
18.7 Design of a Schmidt-Cassegrain “from Scratch” r{Rg920
)emOKS
19 Infrared and Ultraviolet Systems q0mOG^
19.1 Infrared Optics 4'pS*v
19.2 IR Objective Lenses V\~Wv V
19.3 IR Telescope sRHA."A!8
19.4 Laser Beam Expanders P'Q$d+F,
19,5 Ultraviolet Systems +t)n;JHN
19.6 Microlithographic Lenses _W!p8cB
SS|z*h
Z
20 Zoom Lenses Zi$ziDz&
20.1 Zoom Lenses a~LC+8|JW
20.2 Zoom Lenses for Point and Shoot Cameras qOV[TP,
20.3 A 20X Video Zoom Lens .aOnGp
20.4 A Zoom Scanner Lens Rf %HIAVE
20.5 A Possible Zoom Lens Design Procedure ;$j7H&UNQj
vEe NW
21 Projection TV Lenses and Macro Lenses E4.SF|=x
21.1 Projection TV Lenses a l9.}
21.2 Macro Lenses xG&SX#[2
R>@uY(>dJ
22 Scanner/ , Laser Disk and Collimator Lenses U!5)5c}G
22.1 Monochromatic Systems dj6*6qX0'^
22.2 Scanner Lenses S]3Ev#>
22.3 Laser Disk, Focusing, and Collimator Lenses Rhzn/\)|
~|Y>:M+0Z
23 Tolerance Budgeting g+8hp@a
23.1 The Tolerance Budget ~3h-j K?
23.2 Additive Tolerances g&/p*c_
23.3 Establishing the Tolerance Budget .S\&L-{
XJ0{
24 Formulary W1aa:hEf
24.1 Sign Conventions, Symbols, and Definitions d^ ZMS~\*
24.2 The Cardinal Points m#H3:-h,
24.3 Image Equations +A_J1iJ<
24.4 Paraxial Ray Tracing (Surface by Surface) o`,Qku k
24.5 Invariants ^cvl:HOog
24.6 Paraxial Ray Tracing (Component by Component) @R~5-m
24.7 Two-Componenet Relationships Rs& @4_D
24.8 Third-Order Aberrations – Surface Contributions F9q8SA#"
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs h:\oly\
24.10 Stop Shift Equations ~q +[<xR\
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces -_VG;$,jE
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 9~IQw#<
uZKP"Oy
lt'I,Xt
Glossary cFd
>oDS
Reference %!Q`e79g8
Index