"Modern Lens Design" 2nd Edition by Warren J. Smith Nh+ H 9
X:{!n({r=
Contents of Modern Lens Design 2nd Edition F#E3q|Q"BS
_+MJ%'>S
1 Introduction W(p_.p"
1.1 Lens Design Books 8&dF
1.2 Reference Material T)_hpt.
1.3 Specifications J'r^/
1.4 Lens Design $*m-R*kt
1.5 Lens Design Program Features _yR^*}xJb
1.6 About This Book "m>81-0
COlaD"Y
2 Automatic Lens Design Xch~
1K
2.2 The Merit Function veECfR;
2.3 Local Minima 5"H=zJ=r
2.4 The Landscape Lens dj%!I:Q>u
2.5 Types of Merit Function LDa1X2N
2.6 Stagnation klhtKp_p
2.7 Generalized Simulated Annealing \_f v7Fdp{
2.8 Considerations about Variables for Optimization `Q,H|hp;k;
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems d #wVLmKZ
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ],].zlN
2.11 Spectral Weighting }Y4qS
2.12 How to Get Started <gBA1oRz
BJ(M2|VH
3 Improving a Design `M6)f?|$.
3.1 Lens Design Tip Sheet: Standard Improvement Techniques /qw.p#
3.2 Glass Changes ( Index and V Values ) #`s"WnP9'!
3.3 Splitting Elements Z3!`J&
3.4 Separating a Cemented Doublet }(u
ol
3.5 Compounding an Element >
Nr#O
3.6 Vignetting and Its Uses )!T/3|C
3.7 Eliminating a Weak Element; the Concentric Problem x,V r=FB
3.8 Balancing Aberrations [Vt\$
3.9 The Symmetrical Principle +ck}l2
3.10 Aspheric Surfaces *8XEYZa
|Q>IrT
4 Evaluation: How Good is This Design 1BEHw?dLU
4.1 The Uses of a Preliminary Evaluation :BTq!>s
4.2 OPD versus Measures of Performance e>7i_4(C
4.3 Geometric Blur Spot Size versus Certain Aberrations Z/J y'$x
4.4 Interpreting MTF - The Modulation Transfer Function &+R?_Ooibk
4.5 Fabrication Considerations Aiea\jBv
WX0tgXl
5 Lens Design Data e(G|;a
5.1 About the Sample Lens Designs vr^qWn
5.2 Lens Prescriptions, Drawings, and Aberration Plots 8\gjST*
5.3 Estimating the Potential of a Redesign cN9t{.m
5.4 Scaling a Desing, Its Aberrations, and Its MTF %~S&AE-
5.5 Notes on the Interpretation of Ray Intercept Plots xN%K^Tree
5.6 Various Evaluation Plot CJI~_3+K
xkR0
6 Telescope Objective @s^-.z
6.1 The Thin Airspaced Doublet L8 @1THY
6.2 Merit Function for a Telescope Objective wlmRe`R
6.3 The Design of an f/7 Cemented Doublet Telescope Objective $,'*f?d
6.4 Spherochromatism -Y;3I00(
6.5 Zonal Spherical Aberration
j
<RrLn_
6.6 Induced Aberrations gPc=2
6.7 Three-Element Objectives 7=, ; h
6.8 Secondary Spectrum (Apochromatic Systems) c[Zje7 @
6.9 The Design of an f/7 Apochromatic Triplet `@|$,2[C
6.10 The Diffractive Surface in Lens Design s"?3]P
6.11 A Final Note 9~YMyg(Z
>yh2Lri
7 Eyepieces and Magnifiers ,6W>can
7.1 Eyepieces ws^ np
7.2 A Pair of Magnifier Designs ~^b/(
7.3 The Simple, Classical Eyepieces BFW&2
7.4 Design Story of an Eyepiece for a 6*30 Binocular <b<j=_3
7.5 Four-Element Eyepieces ;6hOx(>`=
7.6 Five-Element Eyepieces vVcob}ZH
7.7 Very High Index Eyepiece/Magnifier 5rUdv}.
7.8 Six- and Seven-Element Eyepieces h `.& f
YT8F#t8
8 Cooke Triplet Anastigmats 7j)8Djzp|
8.1 Airspaced Triplet Anastigmats *HB-QIl
8.2 Glass Choice gv{ >`AN
8.3 Vertex Length and Residual Aberrations FU<Jp3<%
8.4 Other Design Considerations ?[>3QE
8.5 A Plastic, Aspheric Triplet Camera Lens kz7(Z'pw
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet %;"y+YFdv
8.7 Possible Improvement to Our “Basic” Triplet -s'-eQF J
8.7 The Rear Earth (Lanthanum) Glasses vSLtFMq^(
8.9 Aspherizing the Surfaces pcI uN
8.10 Increasing the Element Thickness j$5LN.8J
RY*U"G0#w
9 Split Triplets 7})[lL`\s
eQvg7aO;
10 The Tessar, Heliar, and Other Compounded Triplets 5 + MS^H
10.1 The Classic Tessar dcWD(-
10.2 The Heliar/Pentac _oDz-
10.3 The Portrait Lens and the Enlarger Lens m9}P9?
10.4 Other Compounded Triplets w"&n?L
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar J!7MZLb
9k[9P;"F:
11 Double-Meniscus Anastigmats !_Z&a
11.1 Meniscus Components 5.J.RE"M
11.2 The Hypergon, Totogon, and Metrogon vEz"xz1j!]
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 2T[9f;jM'
11.4 Protar, Dagor, and Convertible Lenses R,=fv
11.5 The Split Dagor SOvF[,+
11.6 The Dogmar 4|#WFLo@
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens QnX(V[
i<g-+ Qs
12 The Biotar or Double-Gauss Lens CQDkFQq-dq
12.1 The Basic Six-Element Version s=/v';5J2!
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens j^2j&Ta
12.3 The Seven-Element Biotar - Split-Rear Singlet 2gVm9gAHUd
12.4 The Seven-Element Biotar - Broken Contact Front Doublet H~z`]5CN
12.5 The Seven-Element Biotar - One Compounded Outer Element I[X772K
12.6 The Eight-Element Biotar d9|<@A
12.7 A “Doubled Double-Gauss” Relay {U !g.rh
Tc3yS(aq
13 Telephoto Lenses K@w{"7}
13.1 The Basic Telephoto \:F_xq
13.2 Close-up or Macro Lenses 4#hSJ(~7S
13.3 Telephoto Designs delu1r
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch F`]2O:[
`&6dnSC},P
.y:U&Rw4
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses jdJ>9O0A,
14.1 The Reverse Telephoto Principle OprkR
14.2 The Basic Retrofocus Lens G[q$QB+
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 5bpEYW+
BsYa3d=}
15 Wide Angle Lenses with Negative Outer Lenses
ls)%c
c6]D-YNFG
16 The Petzval Lens; Head-up Display Lenses 2*#|Nj=^
16.1 The Petzval Portrait Lens 1|-Dj|
16.2 The Petzval Projection Lens wZZ t
16.3 The Petzval with a Field Flattener Hc(OI|z~
16.4 Very Height Speed Petzval Lenses o J;$sj
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems U}j0D2
y9}>: pj4
17 Microscope Objectives lQkQ9##*
17.1 General Considerations %FI E\9
17.2 Classic Objective Design Forms; The Aplanatic Front UFb)AnK
17.3 Flat-Field Objectives AbmAKA@
17.4 Reflecting Objectives pBA7,z"`mP
17.5 The Microscope Objective Designs I"7u2"@-8j
O]1(FWYy
18 Mirror and Catadioptric Systems ]f9Cx\d:k
18.1 The Good and Bad Points of Mirrors p,i[W.dy.'
18.2 The Classic Two-Mirror Systems WlBc.kFck
18.3 Catadioptric Systems SQt4v"
18.4 Aspheric Correctors and Schmidt Systems ,]c
1A$Sr0
18.5 Confocal Paraboloids '}bgLv
18.6 Unobscured Systems o`N9!M
18.7 Design of a Schmidt-Cassegrain “from Scratch” [-oc>;`=l
(mt k 4
19 Infrared and Ultraviolet Systems )gy!GK
19.1 Infrared Optics j^rIH#V
19.2 IR Objective Lenses i9][N5\$
19.3 IR Telescope M{hg0/}sUW
19.4 Laser Beam Expanders $,Yd>%Y
19,5 Ultraviolet Systems I,@6J(9
19.6 Microlithographic Lenses 6MdiY1Lr!K
F;0}x;:>
20 Zoom Lenses ?o#%Xs
20.1 Zoom Lenses IG9VdDj
20.2 Zoom Lenses for Point and Shoot Cameras ur7q [n
20.3 A 20X Video Zoom Lens u.Tcg^ v
20.4 A Zoom Scanner Lens =xx]@
20.5 A Possible Zoom Lens Design Procedure 2Ny"O.0h
Px`!A EFd[
21 Projection TV Lenses and Macro Lenses 2JcjZn
21.1 Projection TV Lenses a\YV3NJ/A
21.2 Macro Lenses tr}Loq\y
?|B&M\}g
22 Scanner/ , Laser Disk and Collimator Lenses N7
$I^?<
22.1 Monochromatic Systems 0$fpIz
22.2 Scanner Lenses uw+M
22.3 Laser Disk, Focusing, and Collimator Lenses bTs?!~q
k%QpegN
23 Tolerance Budgeting -"60d
@.
23.1 The Tolerance Budget h
Pa_VrH
23.2 Additive Tolerances h/hmlnOQl
23.3 Establishing the Tolerance Budget tQYM&6g
+<3XJ7D
24 Formulary *QQzvhk
24.1 Sign Conventions, Symbols, and Definitions uurh??R
24.2 The Cardinal Points d8=x0~7
24.3 Image Equations {w^+\]tC
24.4 Paraxial Ray Tracing (Surface by Surface) M>ruKHipFE
24.5 Invariants G`BU=Fi
24.6 Paraxial Ray Tracing (Component by Component) lHe{\N[C
24.7 Two-Componenet Relationships ly_HWuFJ3
24.8 Third-Order Aberrations – Surface Contributions HqD^B[jS
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs $#pPZ
24.10 Stop Shift Equations 2OR{[L*
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ^qQZT]
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) ]B3=lc"
n'kG] Q
x&Kh>PVh\
Glossary w\i\Wp,FP
Reference EZ$>.iy{
Index