"Modern Lens Design" 2nd Edition by Warren J. Smith te;Ox!B&
6<s(e_5f
Contents of Modern Lens Design 2nd Edition a#Kmj0
GL5^_`n
1 Introduction |rxKCzjm
1.1 Lens Design Books YO(:32S
1.2 Reference Material o9i#N
1.3 Specifications eMN+qkvH
1.4 Lens Design Ep<!zO|
1.5 Lens Design Program Features <+\k&W&Y|y
1.6 About This Book pymx\Hd,
4ypRyO
2 Automatic Lens Design ]M~8@K
2.2 The Merit Function mNx,L+3
2.3 Local Minima }0BL0N`_
2.4 The Landscape Lens G}P)vfcH
2.5 Types of Merit Function t}]9VD9
2.6 Stagnation |I}A>XG
2.7 Generalized Simulated Annealing Ehb?CnV#J
2.8 Considerations about Variables for Optimization
$-$5ta{s
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems L2CW'Hd
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits nY{i>Y
2.11 Spectral Weighting Lf^5Eo/
5A
2.12 How to Get Started Nt
zq"ces)
HZDk
<aU/!
3 Improving a Design !K3i-zY
3.1 Lens Design Tip Sheet: Standard Improvement Techniques NV8]#b
3.2 Glass Changes ( Index and V Values ) V<i<0E
3.3 Splitting Elements 5ys#L&q'Z
3.4 Separating a Cemented Doublet M8^.19q;
3.5 Compounding an Element d&aBs++T
3.6 Vignetting and Its Uses \|eJJC
3.7 Eliminating a Weak Element; the Concentric Problem UsLh)#}h
3.8 Balancing Aberrations &<gUFcw7Ui
3.9 The Symmetrical Principle 7$+P|U
3.10 Aspheric Surfaces m x3}m?WQ
Z!wD~C"D73
4 Evaluation: How Good is This Design .Lojzx
4.1 The Uses of a Preliminary Evaluation -l-AToO4
4.2 OPD versus Measures of Performance FNz84qVIx'
4.3 Geometric Blur Spot Size versus Certain Aberrations *>e~_{F
4.4 Interpreting MTF - The Modulation Transfer Function v]WH8GI
4.5 Fabrication Considerations *nYB o\@g
<ZigCo w
5 Lens Design Data AA))KBXq
5.1 About the Sample Lens Designs a?zR8$t|
5.2 Lens Prescriptions, Drawings, and Aberration Plots j6n2dMRvSE
5.3 Estimating the Potential of a Redesign h`?y2?O
5.4 Scaling a Desing, Its Aberrations, and Its MTF ,dHP`j ?
5.5 Notes on the Interpretation of Ray Intercept Plots 4id3P{aU
5.6 Various Evaluation Plot T(Y}V[0+
Rr+qgt;f5
6 Telescope Objective LKqRvPnh
6.1 The Thin Airspaced Doublet ZJ^s}
6.2 Merit Function for a Telescope Objective @<vF]\Ce
6.3 The Design of an f/7 Cemented Doublet Telescope Objective =a?a@+
6.4 Spherochromatism g9DG=\*A
6.5 Zonal Spherical Aberration 3hc#FmLr2b
6.6 Induced Aberrations }US7Nw
6.7 Three-Element Objectives ]dd[WHA
6.8 Secondary Spectrum (Apochromatic Systems) U+4HG
6.9 The Design of an f/7 Apochromatic Triplet 7 ,$ axvLw
6.10 The Diffractive Surface in Lens Design d4ic9u*D
6.11 A Final Note NmjzDN
-"F0eV+y
7 Eyepieces and Magnifiers 65lOX$*{-
7.1 Eyepieces S&n[4*
7.2 A Pair of Magnifier Designs 9n_ eCb)H
7.3 The Simple, Classical Eyepieces e@[9C(5E"
7.4 Design Story of an Eyepiece for a 6*30 Binocular LPq2+:JpS
7.5 Four-Element Eyepieces PdR >;$1
7.6 Five-Element Eyepieces dF$KrwDK
7.7 Very High Index Eyepiece/Magnifier 6/|U
7.8 Six- and Seven-Element Eyepieces ;)gLjF/F7
q4_**
8 Cooke Triplet Anastigmats mDZ=Due1
8.1 Airspaced Triplet Anastigmats lNHNL
a>W
8.2 Glass Choice {b(rm,%
8.3 Vertex Length and Residual Aberrations 9^oo-,Su_
8.4 Other Design Considerations 5QR}IxQ
8.5 A Plastic, Aspheric Triplet Camera Lens ?hKm&B;d
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet
+q7qK*
8.7 Possible Improvement to Our “Basic” Triplet iNt 4>
8.7 The Rear Earth (Lanthanum) Glasses ;JYoW{2
8.9 Aspherizing the Surfaces pNuqT*
8.10 Increasing the Element Thickness Wt(Kd5k0'2
/;DjJpwf0
9 Split Triplets P2>:p%Z
L5/mO6;k
10 The Tessar, Heliar, and Other Compounded Triplets BjYOfu'~z
10.1 The Classic Tessar \kxh#{$z?
10.2 The Heliar/Pentac "rVU4F)
10.3 The Portrait Lens and the Enlarger Lens fc3 Fi'^
10.4 Other Compounded Triplets {h,_"g\V
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar gTnS[
(JWv *p
11 Double-Meniscus Anastigmats 7iP5T
11.1 Meniscus Components 6zuze0ud
11.2 The Hypergon, Totogon, and Metrogon sqT^t!
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ?<E0zM+
11.4 Protar, Dagor, and Convertible Lenses 1f<RyAE?5
11.5 The Split Dagor A&NqQ
V,
11.6 The Dogmar 'v\j.j/i
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens =9(tsB gTX
"tKNlHBu'
12 The Biotar or Double-Gauss Lens .W$
sxVXB
12.1 The Basic Six-Element Version w m19T7*L
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens wsqLXZI
12.3 The Seven-Element Biotar - Split-Rear Singlet GJvp{U}y9I
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ~zMDY F"&
12.5 The Seven-Element Biotar - One Compounded Outer Element B7|c`7x(
12.6 The Eight-Element Biotar @/LiR>,
12.7 A “Doubled Double-Gauss” Relay B_cgWJ*4
[NL -!
13 Telephoto Lenses bTiBmS
13.1 The Basic Telephoto 5\&]J7(
13.2 Close-up or Macro Lenses O)`Gzx*ShU
13.3 Telephoto Designs l**3%cTb
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch '<W<B!HP5Z
lr0M<5d=p
O~atNrHD
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses /w0w*nH
14.1 The Reverse Telephoto Principle [T-*/}4$
14.2 The Basic Retrofocus Lens gn^!"MN+g
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses -8/ JP
k&!6fZ)
15 Wide Angle Lenses with Negative Outer Lenses \ZsP]};*
Z B$NVY
16 The Petzval Lens; Head-up Display Lenses
^iuo^2+
16.1 The Petzval Portrait Lens 7C?E z%a@
16.2 The Petzval Projection Lens *y?[<2"$
16.3 The Petzval with a Field Flattener t| _{;!^
16.4 Very Height Speed Petzval Lenses mVt3WZa
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems }Bi@?Sb
xvB8YW"
17 Microscope Objectives *t]v}ZV*
17.1 General Considerations zC#%6@P\
17.2 Classic Objective Design Forms; The Aplanatic Front 6m@0;Ht
17.3 Flat-Field Objectives bLco:-G1E1
17.4 Reflecting Objectives R B%:h-t4
17.5 The Microscope Objective Designs l/QhD?)9
8RU.}PD
18 Mirror and Catadioptric Systems ni<[G0#T
18.1 The Good and Bad Points of Mirrors 83Uw
18.2 The Classic Two-Mirror Systems FllX za)
18.3 Catadioptric Systems Zt_r9xs>
18.4 Aspheric Correctors and Schmidt Systems :T5A84/C
18.5 Confocal Paraboloids y]
y9'5_
18.6 Unobscured Systems bJPJ.+G7
18.7 Design of a Schmidt-Cassegrain “from Scratch” - zQ<ZE
HD H
19 Infrared and Ultraviolet Systems ]);NnsG
19.1 Infrared Optics Sk$KqHX(
19.2 IR Objective Lenses vzG ABP
19.3 IR Telescope KGD'mByt"
19.4 Laser Beam Expanders ~?d>fR:X
19,5 Ultraviolet Systems c;^A)_/
19.6 Microlithographic Lenses 7gr^z)${J
R(`]n!V2
20 Zoom Lenses \?dTH:v/E
20.1 Zoom Lenses `,P
>mp)uU
20.2 Zoom Lenses for Point and Shoot Cameras Wj tft%
20.3 A 20X Video Zoom Lens +KP_yUq[
20.4 A Zoom Scanner Lens >:$"a
20.5 A Possible Zoom Lens Design Procedure }jiK3?e
j_V/GnEQ
21 Projection TV Lenses and Macro Lenses &oEyixe
21.1 Projection TV Lenses TL'0T,Jo
21.2 Macro Lenses QXY}STs
@k9Pz<ub
22 Scanner/ , Laser Disk and Collimator Lenses 6+e4<sy[E
22.1 Monochromatic Systems ~
aA;<#
22.2 Scanner Lenses wPgDy
22.3 Laser Disk, Focusing, and Collimator Lenses P7UJ-2%Y+
\%4|t,en
23 Tolerance Budgeting d' OGVN
23.1 The Tolerance Budget &`@lB (m
23.2 Additive Tolerances A%n?}
23.3 Establishing the Tolerance Budget d- kZt@DL=
Y;eoTJ
24 Formulary A2BRbwr>
24.1 Sign Conventions, Symbols, and Definitions yquAr$L!
24.2 The Cardinal Points {=iyK/Uf
24.3 Image Equations #9,=Owup
24.4 Paraxial Ray Tracing (Surface by Surface) D2]ZMDL.
24.5 Invariants vpV$$=Qwp
24.6 Paraxial Ray Tracing (Component by Component) Cm410 =b
24.7 Two-Componenet Relationships C`EY5"N r
24.8 Third-Order Aberrations – Surface Contributions %qi%$
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs yW`e |!
24.10 Stop Shift Equations O5OXw]
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces (Vap7.6;_
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) cmIT$?J
p[ Hr39o
Vd<K4Tk
Glossary ,Z5Fea
Reference y]^#$dK(z
Index