"Modern Lens Design" 2nd Edition by Warren J. Smith XPUH\I=
Dr(.|)hv[&
Contents of Modern Lens Design 2nd Edition \C}tK,79
<6p{eGAQV
1 Introduction 1ErH \!
1.1 Lens Design Books 2c0eh-Gf
1.2 Reference Material d^]wqn pf
1.3 Specifications /J{P8=x}_:
1.4 Lens Design 1P8$z:|~
1.5 Lens Design Program Features }kL%l
1.6 About This Book 9AB~*;U
LdWeI
2 Automatic Lens Design uT]_pKm
2.2 The Merit Function 4CX *
2.3 Local Minima L=Dx$#|
2.4 The Landscape Lens .vQ2w
2.5 Types of Merit Function J9poqp@`MG
2.6 Stagnation J_rCo4}
2.7 Generalized Simulated Annealing 22tY%Y9
2.8 Considerations about Variables for Optimization tm+}@CM^.
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems PK3T@Qv89
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits z_JZx]*/
2.11 Spectral Weighting 4pA<s-
2.12 How to Get Started wZfR>|f
,Hys9I
3 Improving a Design 'kW`62AX
3.1 Lens Design Tip Sheet: Standard Improvement Techniques pVbX#3
3.2 Glass Changes ( Index and V Values ) Htsa<tF
3.3 Splitting Elements #"i}wS
3.4 Separating a Cemented Doublet -iH/~a
3.5 Compounding an Element 6_zL#7E'
3.6 Vignetting and Its Uses 1grrb&K
3.7 Eliminating a Weak Element; the Concentric Problem Wt8;S$!=R
3.8 Balancing Aberrations .V/TVz!b
3.9 The Symmetrical Principle [>"qOFCr#:
3.10 Aspheric Surfaces vNE91
& rw|fF|]
4 Evaluation: How Good is This Design 5^*
d4[&+
4.1 The Uses of a Preliminary Evaluation q%>L/KJ#
4.2 OPD versus Measures of Performance lZn <v'y
4.3 Geometric Blur Spot Size versus Certain Aberrations {R1jysGtD
4.4 Interpreting MTF - The Modulation Transfer Function #+Vvf
4.5 Fabrication Considerations #XJYkaL
/-BplU*"9
5 Lens Design Data |&RdOjw$u
5.1 About the Sample Lens Designs lX5(KUN
5.2 Lens Prescriptions, Drawings, and Aberration Plots (x.K%QC)
5.3 Estimating the Potential of a Redesign NO* 1km[#
5.4 Scaling a Desing, Its Aberrations, and Its MTF Lk3@Eu)
5.5 Notes on the Interpretation of Ray Intercept Plots /}M@
@W
5.6 Various Evaluation Plot P?TFX.p7
sF|<m)Kt{W
6 Telescope Objective _HGDqjL
6.1 The Thin Airspaced Doublet fWKv3S1dT
6.2 Merit Function for a Telescope Objective bd)A6a\h
6.3 The Design of an f/7 Cemented Doublet Telescope Objective H,H'bd/
6.4 Spherochromatism 4|++0=#D$
6.5 Zonal Spherical Aberration 8swj'SjX
6.6 Induced Aberrations L}:u9$w
6.7 Three-Element Objectives .4-;
6.8 Secondary Spectrum (Apochromatic Systems) y'4=
6.9 The Design of an f/7 Apochromatic Triplet aNXu"US+Sp
6.10 The Diffractive Surface in Lens Design fep#Kb%"e
6.11 A Final Note S4?ssI
xhqIE3gd
7 Eyepieces and Magnifiers TAzhD.6C
7.1 Eyepieces FirmzB Il5
7.2 A Pair of Magnifier Designs 9 .%{M#j
7.3 The Simple, Classical Eyepieces c>DAR
7.4 Design Story of an Eyepiece for a 6*30 Binocular AV&W&$
7.5 Four-Element Eyepieces t[an,3
7.6 Five-Element Eyepieces WgxlQXi-B
7.7 Very High Index Eyepiece/Magnifier F*I{?NRN1
7.8 Six- and Seven-Element Eyepieces ~9'VP}\
PeE'#&wn
8 Cooke Triplet Anastigmats VK?,8Y
8.1 Airspaced Triplet Anastigmats })"9TfC
8.2 Glass Choice RqcX_x(p
8.3 Vertex Length and Residual Aberrations @p`#y
8.4 Other Design Considerations fMLm_5 (H
8.5 A Plastic, Aspheric Triplet Camera Lens :&TOQ<vM
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet Sf*VkH
8.7 Possible Improvement to Our “Basic” Triplet 6Ajiz_~U
8.7 The Rear Earth (Lanthanum) Glasses gL}K84T$S
8.9 Aspherizing the Surfaces #j; &g1
8.10 Increasing the Element Thickness < ^J!*>
$> #PhOC
9 Split Triplets /{qr~7k,oQ
k87B+0QEL
10 The Tessar, Heliar, and Other Compounded Triplets !-2S(8
10.1 The Classic Tessar "$Rl9(}
10.2 The Heliar/Pentac j4brDlo?@
10.3 The Portrait Lens and the Enlarger Lens =2`s Uw}
10.4 Other Compounded Triplets Lb/a_8<E?
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar 5IMh$!/uc
]p#Zdm1EL
11 Double-Meniscus Anastigmats *M KVm)Iv
11.1 Meniscus Components Re.fS6y$>
11.2 The Hypergon, Totogon, and Metrogon XPX{c|]>.
11.3 A Two Element Aspheric Thick Meniscus Camera Lens P7@qvg
11.4 Protar, Dagor, and Convertible Lenses %A64 Y<K
11.5 The Split Dagor 1>|p1YZ"
11.6 The Dogmar Wxp^*._q3I
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens <cWo]T`X!
>#>YoA@S
12 The Biotar or Double-Gauss Lens nre8 F
12.1 The Basic Six-Element Version 0>.'w\,87B
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens f Z \Ev%F
12.3 The Seven-Element Biotar - Split-Rear Singlet Hj2P|;2S
12.4 The Seven-Element Biotar - Broken Contact Front Doublet _;0:wXib=
12.5 The Seven-Element Biotar - One Compounded Outer Element ?|8H$1
12.6 The Eight-Element Biotar S liF$}J
12.7 A “Doubled Double-Gauss” Relay 6NZf!7,B
&O!d!Pf
13 Telephoto Lenses hr)TC-
13.1 The Basic Telephoto e=_*\`/CN
13.2 Close-up or Macro Lenses 3-_4p8OK
13.3 Telephoto Designs } 10Dvt>+
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch R?]>8o,
LFh(.
}
/?by4v73P
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses [i&tE.7
14.1 The Reverse Telephoto Principle RNIfw1R
14.2 The Basic Retrofocus Lens ;N4mR6
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses SZyPl9.b
Ie+z"&0
15 Wide Angle Lenses with Negative Outer Lenses /=-E`%R}!
I:Z38xz -[
16 The Petzval Lens; Head-up Display Lenses zM)o^Fn2
16.1 The Petzval Portrait Lens 5F0sfX
16.2 The Petzval Projection Lens K,^b=_]
16.3 The Petzval with a Field Flattener ,,,5pCi\
16.4 Very Height Speed Petzval Lenses _39b8s{
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 6%fU}si,
i44KTC"sB
17 Microscope Objectives 47t^{WrT
17.1 General Considerations SUvHLOA
17.2 Classic Objective Design Forms; The Aplanatic Front 3 #jPQ[+
17.3 Flat-Field Objectives [9$>N
17.4 Reflecting Objectives `%rqQnVB
17.5 The Microscope Objective Designs Ou,B3kuQ+
7AtJ6
18 Mirror and Catadioptric Systems Be}Cj(C
18.1 The Good and Bad Points of Mirrors O0~[]3Y[=
18.2 The Classic Two-Mirror Systems i@d!g"tot
18.3 Catadioptric Systems KXR
18.4 Aspheric Correctors and Schmidt Systems ;,9|;)U?u
18.5 Confocal Paraboloids R':a,6O
18.6 Unobscured Systems 9fe~Q%x=u
18.7 Design of a Schmidt-Cassegrain “from Scratch” WlG/7$
!q$IB?8
19 Infrared and Ultraviolet Systems WRD^S:`BH
19.1 Infrared Optics R=PjLH&)
19.2 IR Objective Lenses w`i3B@w
19.3 IR Telescope \d
v9:X$
19.4 Laser Beam Expanders {L.0jAwB
19,5 Ultraviolet Systems Na[bCt
19.6 Microlithographic Lenses o>j3<#?
GKm)wOb(*S
20 Zoom Lenses hX[hR
20.1 Zoom Lenses >5XE*9
20.2 Zoom Lenses for Point and Shoot Cameras od-N7lp#
20.3 A 20X Video Zoom Lens q?\3m3GM
20.4 A Zoom Scanner Lens v`nodI
20.5 A Possible Zoom Lens Design Procedure =SLJkw&w6
u QCQ$
21 Projection TV Lenses and Macro Lenses QDSB
<0j
21.1 Projection TV Lenses Is%-r.i
21.2 Macro Lenses Jd)|==yD
i)
:Q{[D
22 Scanner/ , Laser Disk and Collimator Lenses Y$%Ze]~
22.1 Monochromatic Systems , gz:2UY#
22.2 Scanner Lenses Soq
'B?>
22.3 Laser Disk, Focusing, and Collimator Lenses Riu0;U( \
dZ;csc@xv
23 Tolerance Budgeting c 8E&
23.1 The Tolerance Budget ?1 ?m4i
23.2 Additive Tolerances l$.C40v
23.3 Establishing the Tolerance Budget K{"(|~=U
o- GHAQ
24 Formulary .}]5y4UQ.
24.1 Sign Conventions, Symbols, and Definitions OSsdB%bIu`
24.2 The Cardinal Points uvZ|6cM
24.3 Image Equations kjjO<x?&*
24.4 Paraxial Ray Tracing (Surface by Surface) VxaJ[s3PQ&
24.5 Invariants Pm
V:J9
24.6 Paraxial Ray Tracing (Component by Component) zq(AN<
24.7 Two-Componenet Relationships * 496"kU
24.8 Third-Order Aberrations – Surface Contributions _[IN9ZC 2G
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 9G 9!=J
24.10 Stop Shift Equations CCQ<.iCU
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces }6ec2I%`o
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) m<