"Modern Lens Design" 2nd Edition by Warren J. Smith %kop's&?C
lVq5>:'}^;
Contents of Modern Lens Design 2nd Edition kRwUR34yc
[xrsa!$
1 Introduction &g5PPQ18
1.1 Lens Design Books 4@Db $PHs
1.2 Reference Material Jq(;BJ90R
1.3 Specifications XMkRYI1~
1.4 Lens Design {5{VGAD&]>
1.5 Lens Design Program Features X0^@E
1.6 About This Book y9/nkF1p
hLuv
2 Automatic Lens Design (>ze{T|
2.2 The Merit Function sF[gjeIb
2.3 Local Minima {'h&[f>zcQ
2.4 The Landscape Lens >K4Nn(~ys
2.5 Types of Merit Function `o }+2Cb
2.6 Stagnation .*9u_2<
2.7 Generalized Simulated Annealing 52Lp_M
2.8 Considerations about Variables for Optimization u*I'c2m
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems D]*|Zmr+}
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits bQq/~
2.11 Spectral Weighting $.d,>F6
2.12 How to Get Started ]>Z9K@
uI?Z_
3 Improving a Design f R@Cg
sw
3.1 Lens Design Tip Sheet: Standard Improvement Techniques ovM;6o
3.2 Glass Changes ( Index and V Values ) 9DM,,h<`
3.3 Splitting Elements r5nHYV&7
3.4 Separating a Cemented Doublet -2[4 @
3.5 Compounding an Element 9@ fSO<
3.6 Vignetting and Its Uses =$gBWS
3.7 Eliminating a Weak Element; the Concentric Problem *'A*!=5(
3.8 Balancing Aberrations
%!nN<%
3.9 The Symmetrical Principle e/:? 9
3.10 Aspheric Surfaces !a:e=b7g
ElB[k<
4 Evaluation: How Good is This Design FI?J8a
4.1 The Uses of a Preliminary Evaluation EwV$2AK
4.2 OPD versus Measures of Performance ]jVE
4.3 Geometric Blur Spot Size versus Certain Aberrations wn.6l
`
4.4 Interpreting MTF - The Modulation Transfer Function L YB@L06a
4.5 Fabrication Considerations oNPvks dC;
5m0lk|`
5 Lens Design Data '5$@I{z
5.1 About the Sample Lens Designs Q"{Dijc%
5.2 Lens Prescriptions, Drawings, and Aberration Plots O<L=N-
5.3 Estimating the Potential of a Redesign l P=I0A-
5.4 Scaling a Desing, Its Aberrations, and Its MTF 5rck]L'
5.5 Notes on the Interpretation of Ray Intercept Plots j_}:=3
5.6 Various Evaluation Plot N1c0>{
+3-5\t`
6 Telescope Objective H9ES|ZJs
6.1 The Thin Airspaced Doublet bK0(c1*a[e
6.2 Merit Function for a Telescope Objective 3'0vLi
6.3 The Design of an f/7 Cemented Doublet Telescope Objective (T pnJq
6.4 Spherochromatism 80Fa i
6.5 Zonal Spherical Aberration )mwwceN
6.6 Induced Aberrations 1irSI,j%z
6.7 Three-Element Objectives Yu)GV7\2
6.8 Secondary Spectrum (Apochromatic Systems) N_B^k8j
6.9 The Design of an f/7 Apochromatic Triplet hLZfArq}
6.10 The Diffractive Surface in Lens Design ^1Fzs(#.
6.11 A Final Note BRY/[QRqZ
><"|>(y
7 Eyepieces and Magnifiers zo"L9&Hzo
7.1 Eyepieces juF=ZW%i
7.2 A Pair of Magnifier Designs 8g_kZ^<[
7.3 The Simple, Classical Eyepieces b?iPQ$NyQ
7.4 Design Story of an Eyepiece for a 6*30 Binocular jG{?>^
7.5 Four-Element Eyepieces ;DnUeE8
7.6 Five-Element Eyepieces #>:S&R?2t
7.7 Very High Index Eyepiece/Magnifier 1I69O6"
7.8 Six- and Seven-Element Eyepieces Q) aZ0 Pt
Ieq_XF]U
8 Cooke Triplet Anastigmats JS m7-p|E
8.1 Airspaced Triplet Anastigmats >/4[OPB0R
8.2 Glass Choice \VOv&s;h
8.3 Vertex Length and Residual Aberrations &53,8r
8.4 Other Design Considerations PZJn/A1
8.5 A Plastic, Aspheric Triplet Camera Lens EHf,VIC8
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet l%mp49<
8.7 Possible Improvement to Our “Basic” Triplet sj/k';#g
8.7 The Rear Earth (Lanthanum) Glasses )ADI[+KW
8.9 Aspherizing the Surfaces $X Uck[
8.10 Increasing the Element Thickness ju[y-am$/
x!s=Nola
9 Split Triplets u5rvrn ]
%`5K8eB
10 The Tessar, Heliar, and Other Compounded Triplets af@a /
10.1 The Classic Tessar :qj^RcmVPL
10.2 The Heliar/Pentac &P}t<;
10.3 The Portrait Lens and the Enlarger Lens <aaT,J8%[
10.4 Other Compounded Triplets hVB(*WA^D
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar _qf~
hhi
U%@C<o
"
11 Double-Meniscus Anastigmats LD?\gK"
11.1 Meniscus Components ~Y~M}4
11.2 The Hypergon, Totogon, and Metrogon d]|K%<+(
11.3 A Two Element Aspheric Thick Meniscus Camera Lens [75?cQD
11.4 Protar, Dagor, and Convertible Lenses hTEb?1CXU
11.5 The Split Dagor &Lzd*}7
11.6 The Dogmar t`hes
$E
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens N\tFK*U^I
,jz~Np_2
12 The Biotar or Double-Gauss Lens .7Yox1,
12.1 The Basic Six-Element Version 1I'Q{X&B
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens @?]>4+Oa0
12.3 The Seven-Element Biotar - Split-Rear Singlet .6rbn8h
12.4 The Seven-Element Biotar - Broken Contact Front Doublet >JA-G@3i
12.5 The Seven-Element Biotar - One Compounded Outer Element ~e,l2
<
12.6 The Eight-Element Biotar -"'+#9{h
12.7 A “Doubled Double-Gauss” Relay 8,h!&9
_0^>^he
13 Telephoto Lenses ->;2CcpHB
13.1 The Basic Telephoto K0v S
13.2 Close-up or Macro Lenses t%^&b'/Z
13.3 Telephoto Designs gx^!&>eIb#
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch hfbu+w):
D{7^y>8_Y-
{y5 L
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses !9r%d8!z
14.1 The Reverse Telephoto Principle U&*%KPy`
14.2 The Basic Retrofocus Lens 5/U{b5
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 5"b1:
w@
#M!{D
15 Wide Angle Lenses with Negative Outer Lenses jbZTlG
{*8G<&
16 The Petzval Lens; Head-up Display Lenses ?771e:>S-
16.1 The Petzval Portrait Lens ^uw]/H3?L
16.2 The Petzval Projection Lens \@h$|nb
16.3 The Petzval with a Field Flattener jzpDKc%
16.4 Very Height Speed Petzval Lenses jp4-w(
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems /L(}VJg-
2)$-L'YS
17 Microscope Objectives &k_LK
17.1 General Considerations znWB.H
17.2 Classic Objective Design Forms; The Aplanatic Front s}UJv\*
17.3 Flat-Field Objectives F_w+8)DZ
17.4 Reflecting Objectives )+,h}XqlX
17.5 The Microscope Objective Designs wmR~e
P =Q+VIP&
18 Mirror and Catadioptric Systems \pI {b9
18.1 The Good and Bad Points of Mirrors tG9C(D`G
18.2 The Classic Two-Mirror Systems <?DI!~
18.3 Catadioptric Systems >;j&]]-&
18.4 Aspheric Correctors and Schmidt Systems 0cfGI%
18.5 Confocal Paraboloids An?#B4:
18.6 Unobscured Systems 8n2;47 a
18.7 Design of a Schmidt-Cassegrain “from Scratch” "D4% A!i
9qGba=}Ey
19 Infrared and Ultraviolet Systems w3b?i89
19.1 Infrared Optics %}~(%@qB>+
19.2 IR Objective Lenses 6pC1C.
19.3 IR Telescope ()t~XQ
19.4 Laser Beam Expanders Dz2Z
(EXI~
19,5 Ultraviolet Systems Z'5&N5hx
19.6 Microlithographic Lenses ?+Vi
!eS
Hc|cA(9sh9
20 Zoom Lenses 87S,6 Y
20.1 Zoom Lenses aTH$+f1?Q
20.2 Zoom Lenses for Point and Shoot Cameras LN$T.r+
20.3 A 20X Video Zoom Lens ?5};ONjN
20.4 A Zoom Scanner Lens x)$0Nr62D
20.5 A Possible Zoom Lens Design Procedure =\)zb '\=d
NZ8X@|N
21 Projection TV Lenses and Macro Lenses T?Z^2.Pvc
21.1 Projection TV Lenses PX23M|$!
21.2 Macro Lenses K(lVAKiP]
CsT&}-C
22 Scanner/ , Laser Disk and Collimator Lenses ;0 +Dx~
22.1 Monochromatic Systems CHO_3QIz
22.2 Scanner Lenses +mR^ I$9
22.3 Laser Disk, Focusing, and Collimator Lenses p9\*n5{
([rSYKpi
23 Tolerance Budgeting :#n>Q1}x
23.1 The Tolerance Budget `@,Vbn^_
23.2 Additive Tolerances G8?Do+[
23.3 Establishing the Tolerance Budget
H4YA
v,~fG>Y}
24 Formulary "s zJ[
_B
24.1 Sign Conventions, Symbols, and Definitions UpSJ%%.n
24.2 The Cardinal Points fJk'5kv
24.3 Image Equations [wQJVYv
24.4 Paraxial Ray Tracing (Surface by Surface) &AeNrtGu
24.5 Invariants 8gt*`]I
24.6 Paraxial Ray Tracing (Component by Component) :mLXB75gH
24.7 Two-Componenet Relationships k*,+ag*j
24.8 Third-Order Aberrations – Surface Contributions {+{p.
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs _"t>72
`
24.10 Stop Shift Equations |tLD^`bt
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces uz$p'Q
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) NZ!I >
KC(z TY
rL+.3ZO):P
Glossary rHOhi|+
Reference 1L7^g*
Index