"Modern Lens Design" 2nd Edition by Warren J. Smith l( Y
U9dp
E8gbm&x*
Contents of Modern Lens Design 2nd Edition NI<;L m
KCDbE6
1 Introduction ng0tNifZ;
1.1 Lens Design Books WSi`KNX
1.2 Reference Material E`A6GX
1.3 Specifications Ng Jp2ut
1.4 Lens Design EdH;P\c
1.5 Lens Design Program Features pwIu;:O!?
1.6 About This Book \jR('5DcB
k'6Poz+<
2 Automatic Lens Design 1K&_t
2.2 The Merit Function 3AQu\4+A
2.3 Local Minima 6Wn"h|S
2.4 The Landscape Lens +KcD Y1[
2.5 Types of Merit Function 31cC*
2.6 Stagnation %B#(d)T*-
2.7 Generalized Simulated Annealing jIvSjlm I
2.8 Considerations about Variables for Optimization {p90
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems sJ3O ]
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits Uo<iZ3J
2.11 Spectral Weighting U@'F9UB`
2.12 How to Get Started )NjxKSiU@
Y-ZTv(<
3 Improving a Design +t8{aaV
3.1 Lens Design Tip Sheet: Standard Improvement Techniques n1E^8[~'
3.2 Glass Changes ( Index and V Values ) ~#]$YoQ&O
3.3 Splitting Elements VX'cFqrK3
3.4 Separating a Cemented Doublet B*
hW
3.5 Compounding an Element ,ve$bSp
3.6 Vignetting and Its Uses Ho^rYz
3.7 Eliminating a Weak Element; the Concentric Problem .[Hv/?L
3.8 Balancing Aberrations $~G=Hcl9
3.9 The Symmetrical Principle f3E%0cg
3.10 Aspheric Surfaces n !oxwA!
RZL:k;}5
4 Evaluation: How Good is This Design jI%g!
4.1 The Uses of a Preliminary Evaluation ^#0k\f>_
4.2 OPD versus Measures of Performance `A0trC3
4.3 Geometric Blur Spot Size versus Certain Aberrations wI{ED
4.4 Interpreting MTF - The Modulation Transfer Function ^_0l(ke
4.5 Fabrication Considerations \v,mr|
=Z~ nzyaN
5 Lens Design Data um5n3=K
5.1 About the Sample Lens Designs _oU}>5
5.2 Lens Prescriptions, Drawings, and Aberration Plots ajJ+Jn\
5.3 Estimating the Potential of a Redesign _?m%i]~o
5.4 Scaling a Desing, Its Aberrations, and Its MTF wF\5 X
5.5 Notes on the Interpretation of Ray Intercept Plots 7%7 \2!0J}
5.6 Various Evaluation Plot 2 y;J 11\
#ouE,<
6 Telescope Objective qiyX{J7Z
6.1 The Thin Airspaced Doublet zEJZ, <
6.2 Merit Function for a Telescope Objective U%qE=u-
6.3 The Design of an f/7 Cemented Doublet Telescope Objective [m+):q^
6.4 Spherochromatism FVo_=O)
6.5 Zonal Spherical Aberration %9HL"
6.6 Induced Aberrations ;5.S"
6.7 Three-Element Objectives ]N#%exBVo
6.8 Secondary Spectrum (Apochromatic Systems) 4r+s"
|
6.9 The Design of an f/7 Apochromatic Triplet ch-.+p3
6.10 The Diffractive Surface in Lens Design -0G/a&ss
6.11 A Final Note pI]tv@>:f
B{dR/q3;@
7 Eyepieces and Magnifiers 84|oqwZO
7.1 Eyepieces #y2IHO-
7.2 A Pair of Magnifier Designs W6y-~
7.3 The Simple, Classical Eyepieces Kc,=J?Ob
7.4 Design Story of an Eyepiece for a 6*30 Binocular {g@?\
7.5 Four-Element Eyepieces &40# _>W7
7.6 Five-Element Eyepieces r,FPTf
7.7 Very High Index Eyepiece/Magnifier ='U>P(
R-
7.8 Six- and Seven-Element Eyepieces K4`)srd
1{0 L~
8 Cooke Triplet Anastigmats by0@G"AE+
8.1 Airspaced Triplet Anastigmats 6!Z>^'6
8.2 Glass Choice L &nqlH@+~
8.3 Vertex Length and Residual Aberrations mcgkNED
8.4 Other Design Considerations %7vjYvo>
8.5 A Plastic, Aspheric Triplet Camera Lens +Dwq>3AH
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet f *HEw
8.7 Possible Improvement to Our “Basic” Triplet wx]r{
8.7 The Rear Earth (Lanthanum) Glasses grWmF3c#
8.9 Aspherizing the Surfaces Q}qw`L1
8.10 Increasing the Element Thickness 67]kT%0
>dU.ic?19
9 Split Triplets #eZm)KFQg
xoQ;fVNp
10 The Tessar, Heliar, and Other Compounded Triplets n5e1ky*9w
10.1 The Classic Tessar 'Io2",~
M
10.2 The Heliar/Pentac }r _d{nhi
10.3 The Portrait Lens and the Enlarger Lens *41
2)zEy
10.4 Other Compounded Triplets EH2a
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar [)S7`K;
gfU@`A_N"
11 Double-Meniscus Anastigmats 5+yT{,(5
11.1 Meniscus Components -]$=.0 l
11.2 The Hypergon, Totogon, and Metrogon 6U!zc]>
11.3 A Two Element Aspheric Thick Meniscus Camera Lens ?VCM@{9
11.4 Protar, Dagor, and Convertible Lenses 7LZA!3
11.5 The Split Dagor 3{"M N=
11.6 The Dogmar Ku3/xcu:My
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens V#-\ 4`c
)/4xR]
12 The Biotar or Double-Gauss Lens -s5>GwZt
12.1 The Basic Six-Element Version YuVg/ '=
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens }u9wD08x
12.3 The Seven-Element Biotar - Split-Rear Singlet G1z0q3< B
12.4 The Seven-Element Biotar - Broken Contact Front Doublet \]$TBN
dJ4
12.5 The Seven-Element Biotar - One Compounded Outer Element )o\U4t
12.6 The Eight-Element Biotar hY5tBL
12.7 A “Doubled Double-Gauss” Relay FsTl@zN
g71|t7Q
13 Telephoto Lenses |on$)vm
13.1 The Basic Telephoto FKpyD
13.2 Close-up or Macro Lenses '|~L9t
13.3 Telephoto Designs /tqQAvj
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch ?$Tp|<tx#
<>I4wqqb
jDKL}x
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses CgxGvM4
14.1 The Reverse Telephoto Principle zhW.0:9
CR
14.2 The Basic Retrofocus Lens (w/)u
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses J*}Qnl +
B(/)mB
15 Wide Angle Lenses with Negative Outer Lenses v[t*CpGd
W{js9$oJ
16 The Petzval Lens; Head-up Display Lenses -ZKo/N>6}
16.1 The Petzval Portrait Lens XaH%i~}3
16.2 The Petzval Projection Lens _`LQnRp(
16.3 The Petzval with a Field Flattener S(MVL!Lm
16.4 Very Height Speed Petzval Lenses DuzJQSv
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems ,LpG E>s
ZlEH3-Zv
17 Microscope Objectives eT<T[; m
17.1 General Considerations tuWJj^
17.2 Classic Objective Design Forms; The Aplanatic Front l$mfsm|{:
17.3 Flat-Field Objectives m
c q!_#{y
17.4 Reflecting Objectives >ngP\&\
17.5 The Microscope Objective Designs [t.x cO
u?-X07_
18 Mirror and Catadioptric Systems G
zw
$M
18.1 The Good and Bad Points of Mirrors = U)e_q
18.2 The Classic Two-Mirror Systems {L9WeosQ
18.3 Catadioptric Systems v5Qp[O_
18.4 Aspheric Correctors and Schmidt Systems rM5{R}+;
18.5 Confocal Paraboloids IP3%'2}-
18.6 Unobscured Systems `zmjiC
18.7 Design of a Schmidt-Cassegrain “from Scratch” i*9Bu;
E%tGwbi7
19 Infrared and Ultraviolet Systems fH6mv0
19.1 Infrared Optics $<QOMfY>
19.2 IR Objective Lenses %M
KZ':m
19.3 IR Telescope lf?dTPrD
19.4 Laser Beam Expanders "PhP1;A9,
19,5 Ultraviolet Systems @GrQ/F7
19.6 Microlithographic Lenses 8n`O{8:fi
kEr;p{5
20 Zoom Lenses F\U^-/0,
20.1 Zoom Lenses Q
q7+_,w
20.2 Zoom Lenses for Point and Shoot Cameras .
v
L4@_
20.3 A 20X Video Zoom Lens !`$xN~_
20.4 A Zoom Scanner Lens C!%\cy%Xj
20.5 A Possible Zoom Lens Design Procedure 6r3.%V.&
z&x3":@u<
21 Projection TV Lenses and Macro Lenses U`w `Cr
21.1 Projection TV Lenses <{xU.zp'
21.2 Macro Lenses pZUXXX
m(6SiV=D9
22 Scanner/ , Laser Disk and Collimator Lenses ~[H+,+XLY+
22.1 Monochromatic Systems h:qt?$]J
22.2 Scanner Lenses {@tqeu%IM
22.3 Laser Disk, Focusing, and Collimator Lenses THcK,`lX@
We51s^(
23 Tolerance Budgeting 5l]G1+
23.1 The Tolerance Budget g E#4 3
23.2 Additive Tolerances :<w2j6V
23.3 Establishing the Tolerance Budget |?=a84n1l
5:r*em
24 Formulary FWu[{X;
24.1 Sign Conventions, Symbols, and Definitions F{;{o^Pv
24.2 The Cardinal Points %40uw3
24.3 Image Equations =mWr8p-H
24.4 Paraxial Ray Tracing (Surface by Surface) 3LK]VuZE
24.5 Invariants P_{jZ}y(
24.6 Paraxial Ray Tracing (Component by Component) g4"0:^/
24.7 Two-Componenet Relationships ,|u^-J@
24.8 Third-Order Aberrations – Surface Contributions VP\'p1a
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs q5D_bm7,3
24.10 Stop Shift Equations m5w ZS>@
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 6~#$bp^-
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) '1u!@=.\G
U.mVz,k3
dd=';%?
Glossary o fw0_)!Q
Reference S="teH[
Index