"Modern Lens Design" 2nd Edition by Warren J. Smith k&]nF,f
u*l|MIi6J
Contents of Modern Lens Design 2nd Edition e`D}[G#
hArY$T&MB
1 Introduction |7s2xRc
1.1 Lens Design Books Dm>"c;2
1.2 Reference Material 5AYOM=O]t
1.3 Specifications W(s4R,j
1.4 Lens Design iQwQ5m!d &
1.5 Lens Design Program Features 'pdTV:]zA
1.6 About This Book {m.$EoS
/U~|B.z@6
2 Automatic Lens Design 6[> lzEZ
2.2 The Merit Function 'ZfgCu)St
2.3 Local Minima Bh>L"'.2
2.4 The Landscape Lens n+~Dc[
2.5 Types of Merit Function g`7XE
2.6 Stagnation XIeLu"TSL
2.7 Generalized Simulated Annealing >ZgzE
2.8 Considerations about Variables for Optimization *T|B'80
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems K7+yU3
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits +K57. n{
2.11 Spectral Weighting 1 DWoL}Z
2.12 How to Get Started CLb6XnkcA\
'|C3t!H`
3 Improving a Design kI{DxuTad
3.1 Lens Design Tip Sheet: Standard Improvement Techniques yPm2??5MW>
3.2 Glass Changes ( Index and V Values ) ^QB[;g.O
3.3 Splitting Elements C6_(j48&
3.4 Separating a Cemented Doublet vJkc/7
3.5 Compounding an Element RgE`H r
3.6 Vignetting and Its Uses 24mdhT|
3.7 Eliminating a Weak Element; the Concentric Problem Ykbg5Z
3.8 Balancing Aberrations 'Wonz<{'
3.9 The Symmetrical Principle %`vzQt`>
3.10 Aspheric Surfaces 'Ts:.
BT$p~XB
4 Evaluation: How Good is This Design [m
t.2 .
4.1 The Uses of a Preliminary Evaluation s[1ao"sZ^
4.2 OPD versus Measures of Performance @=Kq99=\U
4.3 Geometric Blur Spot Size versus Certain Aberrations '=\}dav!
4.4 Interpreting MTF - The Modulation Transfer Function `&$8/_`
4.5 Fabrication Considerations qtGJJ#^,
=8kmFXo
5 Lens Design Data Kz4S6N c
5.1 About the Sample Lens Designs :QCL9QZ'
5.2 Lens Prescriptions, Drawings, and Aberration Plots yC,/R371k
5.3 Estimating the Potential of a Redesign `+JFvn!
5.4 Scaling a Desing, Its Aberrations, and Its MTF yqK4 "F&
5.5 Notes on the Interpretation of Ray Intercept Plots c}x1-d8
5.6 Various Evaluation Plot weitDr6
Nd_fjB
6 Telescope Objective 4JSPD#%f
6.1 The Thin Airspaced Doublet !XA3G`}p6s
6.2 Merit Function for a Telescope Objective
PJnC
6.3 The Design of an f/7 Cemented Doublet Telescope Objective ?0tg}0|
6.4 Spherochromatism }kbSbRH43
6.5 Zonal Spherical Aberration D7ex{SVA)
6.6 Induced Aberrations 2EY"[xK|
6.7 Three-Element Objectives o9?@jjqH
6.8 Secondary Spectrum (Apochromatic Systems) ntiS7g e1
6.9 The Design of an f/7 Apochromatic Triplet o<2GtF1"o
6.10 The Diffractive Surface in Lens Design J3Mb]X)_}
6.11 A Final Note `sxfj)s
@u3`lhUcT
7 Eyepieces and Magnifiers <3YZ0f f>
7.1 Eyepieces #c!:&9oU
7.2 A Pair of Magnifier Designs &dtk&P{
7.3 The Simple, Classical Eyepieces |Td+,>,
7.4 Design Story of an Eyepiece for a 6*30 Binocular E$d3+``
7.5 Four-Element Eyepieces R{hX--|j
7.6 Five-Element Eyepieces &[.5@sv
7.7 Very High Index Eyepiece/Magnifier gU9{~-9}
7.8 Six- and Seven-Element Eyepieces ZTC>Ufu2!
0r]n
0?x
8 Cooke Triplet Anastigmats b^Hrzn
8.1 Airspaced Triplet Anastigmats [;E%o^/^
8.2 Glass Choice vG&>-Z
8.3 Vertex Length and Residual Aberrations W<Uu.Y{sG
8.4 Other Design Considerations FR(W.5[
8.5 A Plastic, Aspheric Triplet Camera Lens 2`yhxO
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet -F[8ZiZ
8.7 Possible Improvement to Our “Basic” Triplet :-&|QVH
8.7 The Rear Earth (Lanthanum) Glasses WxdQ^#AE
8.9 Aspherizing the Surfaces wak 26W>I3
8.10 Increasing the Element Thickness f*ZU a
Pms@!yce
9 Split Triplets SpH|<L3
tz1@s nes
10 The Tessar, Heliar, and Other Compounded Triplets fBO/0uW
10.1 The Classic Tessar P{L=u74b{x
10.2 The Heliar/Pentac fV:15!S[
10.3 The Portrait Lens and the Enlarger Lens -luQbGcT3
10.4 Other Compounded Triplets "SF0b jG9C
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar t2&kGf"
K/4@2vF
11 Double-Meniscus Anastigmats vwR_2u
11.1 Meniscus Components >WLPE6E
11.2 The Hypergon, Totogon, and Metrogon ?z
,!iK`
11.3 A Two Element Aspheric Thick Meniscus Camera Lens &|SWy
2N
11.4 Protar, Dagor, and Convertible Lenses uL'f8Pqg
11.5 The Split Dagor |5@Ra@0
11.6 The Dogmar h!"2Ux3!x
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens Xj?Wvt
3)OZf{D[
12 The Biotar or Double-Gauss Lens 3F9V,zWtTi
12.1 The Basic Six-Element Version D?|D)"?qb
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ~G@NWF?7
12.3 The Seven-Element Biotar - Split-Rear Singlet pP\Cwo #,
12.4 The Seven-Element Biotar - Broken Contact Front Doublet {1GJ,['qL
12.5 The Seven-Element Biotar - One Compounded Outer Element $Dg-;I
12.6 The Eight-Element Biotar r}U6LE?>
12.7 A “Doubled Double-Gauss” Relay %wD#[<BGn>
D(cD8fn,J
13 Telephoto Lenses ?y>N&\pt2
13.1 The Basic Telephoto HKN|pO3v
13.2 Close-up or Macro Lenses _S!^=9bJ
13.3 Telephoto Designs }"Y<<e<z:
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch _h%Jf{nu
uH_KOiF
0Q3U\cDr
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses B`pBIUu
14.1 The Reverse Telephoto Principle zI88IM7/
14.2 The Basic Retrofocus Lens g`EZLDjt
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses 1=VyD<dNG6
z*3b2nV
15 Wide Angle Lenses with Negative Outer Lenses LUbhTc
3ML][|TR
16 The Petzval Lens; Head-up Display Lenses eSPS3|YYn
16.1 The Petzval Portrait Lens vrn4yHoZ
16.2 The Petzval Projection Lens SA,~q&
16.3 The Petzval with a Field Flattener '2,~'Zk
16.4 Very Height Speed Petzval Lenses /4{WT?j
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems ]&'!0'3`
g 2Fg
17 Microscope Objectives f5}afPk
17.1 General Considerations z zG=!JR
17.2 Classic Objective Design Forms; The Aplanatic Front !&)X5oJ
17.3 Flat-Field Objectives |$.?(FZYu
17.4 Reflecting Objectives B<W}:>3
17.5 The Microscope Objective Designs wGHft`Z
o)Q4+njT@
18 Mirror and Catadioptric Systems 2"0VXtv6
18.1 The Good and Bad Points of Mirrors 2OG/0cP
18.2 The Classic Two-Mirror Systems 3=S|U,
18.3 Catadioptric Systems tpI/Ibq
18.4 Aspheric Correctors and Schmidt Systems ]dycesc'
18.5 Confocal Paraboloids N2h5@*1Y
18.6 Unobscured Systems qxRsq&_
18.7 Design of a Schmidt-Cassegrain “from Scratch” hV3]1E21"
a )O"PA}2
19 Infrared and Ultraviolet Systems (lsG4&\0F
19.1 Infrared Optics -e_fn&2,Y
19.2 IR Objective Lenses 2%/F`_XbP
19.3 IR Telescope >N3X/8KL%
19.4 Laser Beam Expanders L5hF-Ek!
3
19,5 Ultraviolet Systems /%YW[oY{V
19.6 Microlithographic Lenses l&& i`
^Ks1[xc* `
20 Zoom Lenses 6/!:vsa"3
20.1 Zoom Lenses #y\O+\4e
20.2 Zoom Lenses for Point and Shoot Cameras QW..=}pL
20.3 A 20X Video Zoom Lens sbvP1|P8%
20.4 A Zoom Scanner Lens DVQr7tQf
20.5 A Possible Zoom Lens Design Procedure \Y xG
@= <{_p
21 Projection TV Lenses and Macro Lenses 0GMb?/
21.1 Projection TV Lenses HB9"T5Pd*
21.2 Macro Lenses piIZ*@'
XT0-"-q
22 Scanner/ , Laser Disk and Collimator Lenses RXRbW %b
22.1 Monochromatic Systems 5{ap
22.2 Scanner Lenses `n+uA~
22.3 Laser Disk, Focusing, and Collimator Lenses LM<*VhX
'{`KYKLP+
23 Tolerance Budgeting lh-.I]>&`
23.1 The Tolerance Budget cfmwz~S6i
23.2 Additive Tolerances 33`bKKO}
23.3 Establishing the Tolerance Budget ;&lXgC^*
%+r(*Q+0$f
24 Formulary NK-}[!f
24.1 Sign Conventions, Symbols, and Definitions AyJl:aN^
24.2 The Cardinal Points |E13W
24.3 Image Equations (U\o0LI
24.4 Paraxial Ray Tracing (Surface by Surface) 6@aH2+4+
24.5 Invariants n%r>W^2j
24.6 Paraxial Ray Tracing (Component by Component) '[r: pwE
24.7 Two-Componenet Relationships _d!sSyk`
24.8 Third-Order Aberrations – Surface Contributions U& GPede
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs 8hV]t'/;
24.10 Stop Shift Equations U/c+j{=~
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces |@d(2f8
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) X&Oo[Z
03?ADjO
:M6|V_Yp
Glossary h`Jc%6o
Reference (R=ZI
Index