"Modern Lens Design" 2nd Edition by Warren J. Smith ME$[=?7XX
2B1q*`6R
Contents of Modern Lens Design 2nd Edition wKh4|Ka
E#RDqL*J
1 Introduction sQ3[<
1.1 Lens Design Books %jJG>T
1.2 Reference Material Xxj-
6i
1.3 Specifications z9f-.72"X
1.4 Lens Design #!B4 u?"m
1.5 Lens Design Program Features Ha#=(9.
1.6 About This Book =}^9 wP
.N;=\C*
2 Automatic Lens Design @)F )S7
2.2 The Merit Function 299H$$WS,Z
2.3 Local Minima Xfc-UP|}
2.4 The Landscape Lens `?H]h"{7Q
2.5 Types of Merit Function 2y\E[j A
2.6 Stagnation umBICC]CU
2.7 Generalized Simulated Annealing J`Q>3]wL
2.8 Considerations about Variables for Optimization (y'hyJo
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems Cl.x'v
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits ^S<Y>Nm]
2.11 Spectral Weighting u2I*-K
2.12 How to Get Started BU)U/A8iS
D>r&}6<
3 Improving a Design Z3e| UAif
3.1 Lens Design Tip Sheet: Standard Improvement Techniques &;6`)M{*}
3.2 Glass Changes ( Index and V Values ) O^PKn_OJ
3.3 Splitting Elements J-:.FKf\5l
3.4 Separating a Cemented Doublet k8yEdi`
3.5 Compounding an Element OF>mF~
3.6 Vignetting and Its Uses ?PxP% $hS
3.7 Eliminating a Weak Element; the Concentric Problem .~db4d]
3.8 Balancing Aberrations Y|m+dT6
3.9 The Symmetrical Principle *-WpZGh
3.10 Aspheric Surfaces }v;V=%N+v
P;y45b
4 Evaluation: How Good is This Design OnziG+ak
4.1 The Uses of a Preliminary Evaluation Mexk~zA^
4.2 OPD versus Measures of Performance bRDYGuC
4.3 Geometric Blur Spot Size versus Certain Aberrations >{]%F*p4
4.4 Interpreting MTF - The Modulation Transfer Function ^#-l
q)
4.5 Fabrication Considerations GMx&y2. Z
1nM
#kJ"
5 Lens Design Data OO\+J
5.1 About the Sample Lens Designs )* : gqN
5.2 Lens Prescriptions, Drawings, and Aberration Plots mUC)gA/
5.3 Estimating the Potential of a Redesign z
kP_6T09
5.4 Scaling a Desing, Its Aberrations, and Its MTF eIF5ZPSZi
5.5 Notes on the Interpretation of Ray Intercept Plots f)rq%N &
5.6 Various Evaluation Plot ]! &FKy
tFn)aa~L
6 Telescope Objective JG.y,<xW
6.1 The Thin Airspaced Doublet S}3fr^{.
6.2 Merit Function for a Telescope Objective bP#:Oi0v`
6.3 The Design of an f/7 Cemented Doublet Telescope Objective \w>y`\6mX
6.4 Spherochromatism "Y.tht H
6.5 Zonal Spherical Aberration 2|y"!JqE1
6.6 Induced Aberrations m 0C@G5
6.7 Three-Element Objectives \\ij(>CI
6.8 Secondary Spectrum (Apochromatic Systems) @7c?xQVd$
6.9 The Design of an f/7 Apochromatic Triplet 6wRd<]C
6.10 The Diffractive Surface in Lens Design l4YbK np]
6.11 A Final Note N% B>M7-=
ODN/G%l
7 Eyepieces and Magnifiers &B;~
7.1 Eyepieces wm@@$
7.2 A Pair of Magnifier Designs +E+p"7
7.3 The Simple, Classical Eyepieces A2FYBM`Q&D
7.4 Design Story of an Eyepiece for a 6*30 Binocular ]cvwIc">
7.5 Four-Element Eyepieces =Bey gT^
7.6 Five-Element Eyepieces C=xa5Y
7.7 Very High Index Eyepiece/Magnifier aKDKmHd
7.8 Six- and Seven-Element Eyepieces t3ZOco@~P
rHI{aO7
8 Cooke Triplet Anastigmats {WS;dX4
8.1 Airspaced Triplet Anastigmats ^CH=O|8j
8.2 Glass Choice 4@gG<QJW
8.3 Vertex Length and Residual Aberrations 3`?7<YJ
8.4 Other Design Considerations S+6.ZZ9c
8.5 A Plastic, Aspheric Triplet Camera Lens (E3b\lST
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet zI uJ-8T"
8.7 Possible Improvement to Our “Basic” Triplet "{xrL4BtC
8.7 The Rear Earth (Lanthanum) Glasses RBd7YWo\|j
8.9 Aspherizing the Surfaces n&/
`
8.10 Increasing the Element Thickness ) q4[zv9
>6-`}G+|
9 Split Triplets H41?/U,{
R w\gTo
10 The Tessar, Heliar, and Other Compounded Triplets 7EEl+;wK
10.1 The Classic Tessar I
34>X`[o
10.2 The Heliar/Pentac (mB&m@-N
10.3 The Portrait Lens and the Enlarger Lens VQ@
10.4 Other Compounded Triplets
/maJtX'
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar Yh7t"=o
?j.,Nw4FC
11 Double-Meniscus Anastigmats -i|}m++
11.1 Meniscus Components q<<v,ihh
11.2 The Hypergon, Totogon, and Metrogon 1GRCV8"Z^
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 8Fh)eha9f
11.4 Protar, Dagor, and Convertible Lenses >y>5#[M!
11.5 The Split Dagor . Efk*
11.6 The Dogmar |e&\<LwsP
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens /N.b%M]!
h#*dI`>l-
12 The Biotar or Double-Gauss Lens .{^5X)
12.1 The Basic Six-Element Version T::85
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens WU`
rh^
12.3 The Seven-Element Biotar - Split-Rear Singlet wlvgg
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ~?}Emn;t
12.5 The Seven-Element Biotar - One Compounded Outer Element gH vZVC[b
12.6 The Eight-Element Biotar @mBQ?;qlK
12.7 A “Doubled Double-Gauss” Relay 0+ '&`Q!u
!qg`/y9
13 Telephoto Lenses vr l-$ii
13.1 The Basic Telephoto 7]bGc
\
13.2 Close-up or Macro Lenses ^ytrK
Q
13.3 Telephoto Designs +sA2WK]
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch q`-N7 ,$T
^
@5QP$.
_VN?#J)o
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses TdMruSY
14.1 The Reverse Telephoto Principle `h\j99
14.2 The Basic Retrofocus Lens L*+@>3mu)
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses ^CX6&d
3
i0_hZ
15 Wide Angle Lenses with Negative Outer Lenses +'a^f5
P@B]
16 The Petzval Lens; Head-up Display Lenses kzLsoZ!I
16.1 The Petzval Portrait Lens ND;#7/$>
16.2 The Petzval Projection Lens LL!Dx%JZ
16.3 The Petzval with a Field Flattener m
s\}
16.4 Very Height Speed Petzval Lenses fr3d
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems +6\Zj)
Sm|6 %3
17 Microscope Objectives 2ilQXy
17.1 General Considerations GefTdO.&
17.2 Classic Objective Design Forms; The Aplanatic Front x;d6vBTUb
17.3 Flat-Field Objectives F41=b4/
17.4 Reflecting Objectives >bW#Zs,6
17.5 The Microscope Objective Designs 0e4{{zQx
T5h
H
18 Mirror and Catadioptric Systems R 9\*#c
18.1 The Good and Bad Points of Mirrors +0Y&`{#Z
18.2 The Classic Two-Mirror Systems H{wl% G
18.3 Catadioptric Systems ?tbrbkx
18.4 Aspheric Correctors and Schmidt Systems c@7rqHU-0
18.5 Confocal Paraboloids lo+A%\1
18.6 Unobscured Systems .q>iXE_c
18.7 Design of a Schmidt-Cassegrain “from Scratch” }7Q% 6&IR
'=pU^Oz<}
19 Infrared and Ultraviolet Systems L0o\J` :
19.1 Infrared Optics C6PdDRf
19.2 IR Objective Lenses N6:`/f+A>T
19.3 IR Telescope (<9u-HF#
19.4 Laser Beam Expanders fHFE){
19,5 Ultraviolet Systems ]a`$LW}
19.6 Microlithographic Lenses Zy/_
E@C}u
;Y, y 4{H3
20 Zoom Lenses * EH~_F
20.1 Zoom Lenses fJg+ Ryo
20.2 Zoom Lenses for Point and Shoot Cameras k_#)Tw*
20.3 A 20X Video Zoom Lens })%{AfDRF
20.4 A Zoom Scanner Lens ]f_p8?j"
20.5 A Possible Zoom Lens Design Procedure 2>%=U~5
o]V^};B
21 Projection TV Lenses and Macro Lenses W=?<<dVYD
21.1 Projection TV Lenses 2,b$7xaf
21.2 Macro Lenses l/5
hp.
6gDN`e,@
22 Scanner/ , Laser Disk and Collimator Lenses H5|;{q:j
22.1 Monochromatic Systems hZb_P\1X
22.2 Scanner Lenses Pq$n5fZC!
22.3 Laser Disk, Focusing, and Collimator Lenses ~n_HP_Kf?
8s@3hXD&
23 Tolerance Budgeting :ws<-Qy
23.1 The Tolerance Budget ccxNbU
23.2 Additive Tolerances ;uGv:$([g
23.3 Establishing the Tolerance Budget /;$[E
a<e[e>
24 Formulary ]SEZaT
24.1 Sign Conventions, Symbols, and Definitions #'`{Qv0,
24.2 The Cardinal Points u ga_T
24.3 Image Equations <P<z N~i9j
24.4 Paraxial Ray Tracing (Surface by Surface) x8|J-8A(
24.5 Invariants .}+}8[p4l
24.6 Paraxial Ray Tracing (Component by Component) h";L
24.7 Two-Componenet Relationships u3D)M%e
24.8 Third-Order Aberrations – Surface Contributions :`sUt1Fw.
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs -{vD:Il=6
24.10 Stop Shift Equations Y]a@j!
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces (9)Q ' 'S
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 6S#Cl>v
p#tI;"\y
l]SX@zTb
Glossary x{n=;JD
Reference pgo$61
Index