"Modern Lens Design" 2nd Edition by Warren J. Smith aQxe)
/%-o.hT
Contents of Modern Lens Design 2nd Edition xP42xv9U
x
Ridc^
1 Introduction l<s :%%CX
1.1 Lens Design Books _ \_3s
1.2 Reference Material :l4^iSf
1.3 Specifications MkkA{p
1.4 Lens Design uF+);ig
1.5 Lens Design Program Features >'ie!VW@
1.6 About This Book <xXiJU+
>y&[BB7S6
2 Automatic Lens Design 4(m/D>6:
2.2 The Merit Function w4NZt|>5j;
2.3 Local Minima mf+K{y,L
2.4 The Landscape Lens +}&pVe\t
2.5 Types of Merit Function #)Ep(2
2.6 Stagnation A&D2T
2.7 Generalized Simulated Annealing <.;@ksCPW{
2.8 Considerations about Variables for Optimization 3D{82*&
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems /DK*yS
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits \a\^(`3a[
2.11 Spectral Weighting Hf;RIl2F
2.12 How to Get Started " vv$%^
M4R%Gr,La
3 Improving a Design unx;m$-c
3.1 Lens Design Tip Sheet: Standard Improvement Techniques PY[Sz=[
3.2 Glass Changes ( Index and V Values ) 2=i+L z^
3.3 Splitting Elements U+:S7z@j?
3.4 Separating a Cemented Doublet Pw0{.W~r
3.5 Compounding an Element <{3q{VW*
3.6 Vignetting and Its Uses =c
:lS&B
3.7 Eliminating a Weak Element; the Concentric Problem ?psOj%
3.8 Balancing Aberrations K!pxDW}
3.9 The Symmetrical Principle ?IL!
X-xx
3.10 Aspheric Surfaces y.L|rRe@P
cpP.7ZR
4 Evaluation: How Good is This Design a.5zdoH_
4.1 The Uses of a Preliminary Evaluation Uh<H*o6e 9
4.2 OPD versus Measures of Performance 1"mnzbf8*
4.3 Geometric Blur Spot Size versus Certain Aberrations jB}_Slh1j
4.4 Interpreting MTF - The Modulation Transfer Function 46QYXmNQ}
4.5 Fabrication Considerations u40b?
n.
;}UIj{sj*
5 Lens Design Data =e"H1^Ml
5.1 About the Sample Lens Designs f(EYx)gZ
5.2 Lens Prescriptions, Drawings, and Aberration Plots m0dFA<5-
5.3 Estimating the Potential of a Redesign K8e4ax
5.4 Scaling a Desing, Its Aberrations, and Its MTF @h ,h=X
5.5 Notes on the Interpretation of Ray Intercept Plots (:tTx>V#
5.6 Various Evaluation Plot WM~J,`]J
jM|YW*zNZ
6 Telescope Objective Gnuo-8lb
6.1 The Thin Airspaced Doublet eH"qI2A
6.2 Merit Function for a Telescope Objective g_-?h&W
6.3 The Design of an f/7 Cemented Doublet Telescope Objective #n6FQ$l8m
6.4 Spherochromatism RPa?Nv?e
6.5 Zonal Spherical Aberration CDwFVR'_Af
6.6 Induced Aberrations X^?|Sz<^E
6.7 Three-Element Objectives ,"v)vTt
6.8 Secondary Spectrum (Apochromatic Systems)
KT]J,b
6.9 The Design of an f/7 Apochromatic Triplet '@3a,pl
6.10 The Diffractive Surface in Lens Design b |o`Q7Hj
6.11 A Final Note -(%ar%~Zd
Q"l"p:n%n
7 Eyepieces and Magnifiers .(gT+5[
7.1 Eyepieces a:(: :m
7.2 A Pair of Magnifier Designs _Ex*%Qf.
7.3 The Simple, Classical Eyepieces
ve6N
7.4 Design Story of an Eyepiece for a 6*30 Binocular "4Wp>B
7.5 Four-Element Eyepieces V'f&JQA
7.6 Five-Element Eyepieces C7XS6Nqu
7.7 Very High Index Eyepiece/Magnifier .f?qUg
7.8 Six- and Seven-Element Eyepieces Lk8W&|;0|
hPEp0("
8 Cooke Triplet Anastigmats YI? C-,
8.1 Airspaced Triplet Anastigmats x):k#cu[L
8.2 Glass Choice E'Fv *UA
8.3 Vertex Length and Residual Aberrations 8VAYIxRv
8.4 Other Design Considerations c"QkE*
8.5 A Plastic, Aspheric Triplet Camera Lens X+'^Sp
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet /z.7:<gZ(
8.7 Possible Improvement to Our “Basic” Triplet :!Y?j{sGU
8.7 The Rear Earth (Lanthanum) Glasses ^J*G%*
8.9 Aspherizing the Surfaces 5* o\z&*L
8.10 Increasing the Element Thickness #*7/05)
iA^+/Lt
9 Split Triplets 8f6;y1!;
U||w6:W5
10 The Tessar, Heliar, and Other Compounded Triplets c],frhmyd
10.1 The Classic Tessar AD!<%h:
10.2 The Heliar/Pentac J6^Ct
10.3 The Portrait Lens and the Enlarger Lens 08d_DCR
10.4 Other Compounded Triplets 6iV"Tl{z-
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar ?( dYW7S
NP<F==,
11 Double-Meniscus Anastigmats r%m7YwXo
11.1 Meniscus Components C&CsI] @g
11.2 The Hypergon, Totogon, and Metrogon +ia(%[
11.3 A Two Element Aspheric Thick Meniscus Camera Lens 9qu24zz$P
11.4 Protar, Dagor, and Convertible Lenses =p&'_a^$
11.5 The Split Dagor
6Qzu-
11.6 The Dogmar vwqN;|F
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens +=B}R
~y-vKCp|
12 The Biotar or Double-Gauss Lens E;GR;i{t
12.1 The Basic Six-Element Version PhI6dB`
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ZR01<V
12.3 The Seven-Element Biotar - Split-Rear Singlet |au qj2
12.4 The Seven-Element Biotar - Broken Contact Front Doublet l3Bxi1k[C
12.5 The Seven-Element Biotar - One Compounded Outer Element afP&+ 5t@O
12.6 The Eight-Element Biotar wMPw/a;
12.7 A “Doubled Double-Gauss” Relay ==jw3_W
~b6<uRnM.
13 Telephoto Lenses 7)(`
13.1 The Basic Telephoto :C:N]6_{SZ
13.2 Close-up or Macro Lenses $ DZQdhv
13.3 Telephoto Designs uZiY<(X
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch F#}1{$)%
/
eE riv@v
YaJ{"'}
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses mTuB*
14.1 The Reverse Telephoto Principle @y\{<X.F\1
14.2 The Basic Retrofocus Lens |C)UZ4A/p
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses <K=B(-~
:kiO
15 Wide Angle Lenses with Negative Outer Lenses ~ Dp:j*H
@aV~.!!
16 The Petzval Lens; Head-up Display Lenses @gqs4cg{f
16.1 The Petzval Portrait Lens 1={Tcq\]
16.2 The Petzval Projection Lens <Ec)m69P
16.3 The Petzval with a Field Flattener g=YiR/O1QN
16.4 Very Height Speed Petzval Lenses ,I&0#+}n
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems r(in]7
2bn@:71`
17 Microscope Objectives % 6hw
17.1 General Considerations S_ -QvG2
17.2 Classic Objective Design Forms; The Aplanatic Front Ualq>J5-m-
17.3 Flat-Field Objectives T;[c<gc/
17.4 Reflecting Objectives e9_O/i N
17.5 The Microscope Objective Designs AIxBZt7{b
<sCq
x/L
18 Mirror and Catadioptric Systems 7+!7]'V
18.1 The Good and Bad Points of Mirrors E#2k|TpH4
18.2 The Classic Two-Mirror Systems .iN*V|n
18.3 Catadioptric Systems `Ig2f$}
18.4 Aspheric Correctors and Schmidt Systems FPUR0myCU
18.5 Confocal Paraboloids B%g :Z
18.6 Unobscured Systems zI:5I @ X
18.7 Design of a Schmidt-Cassegrain “from Scratch” #HuA(``[d
UrcN?
19 Infrared and Ultraviolet Systems nC!^,c
19.1 Infrared Optics aCi^^}!
19.2 IR Objective Lenses 73z|'0.
19.3 IR Telescope //u76nQ
19.4 Laser Beam Expanders PLD'Q,R
19,5 Ultraviolet Systems ]vkHU6d
19.6 Microlithographic Lenses )4_6\VaM
_t;VE06Xjs
20 Zoom Lenses 'kg]|"M
20.1 Zoom Lenses #Xw[i
20.2 Zoom Lenses for Point and Shoot Cameras L%O8vn^3
20.3 A 20X Video Zoom Lens ~W *j^+T"
20.4 A Zoom Scanner Lens l
75{JxZX
20.5 A Possible Zoom Lens Design Procedure #M^Yh?~%w
[O+^eE6h
21 Projection TV Lenses and Macro Lenses %3+hz$E
21.1 Projection TV Lenses Nl<,rD+KSD
21.2 Macro Lenses PM<LR?PLc
D:vUy*
22 Scanner/ , Laser Disk and Collimator Lenses {i}Q}OgYq
22.1 Monochromatic Systems G1^!e j
22.2 Scanner Lenses jzA8f+:q
22.3 Laser Disk, Focusing, and Collimator Lenses Ru')X{]25
Bpo68%dx89
23 Tolerance Budgeting TIhzMW\/K
23.1 The Tolerance Budget 9w<Bm"G
23.2 Additive Tolerances h5JwB<8
23.3 Establishing the Tolerance Budget EM
w(%}8w
A^@ <+?
24 Formulary u\geD
24.1 Sign Conventions, Symbols, and Definitions @d^h/w
24.2 The Cardinal Points !gew;Jz
24.3 Image Equations U@5Z9/n{
24.4 Paraxial Ray Tracing (Surface by Surface) :@Dos'0Px
24.5 Invariants RZh)0S>J
24.6 Paraxial Ray Tracing (Component by Component) N_Ld,J%g
24.7 Two-Componenet Relationships [=F
|^KL
24.8 Third-Order Aberrations – Surface Contributions "s<lLgi
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs Jv.R?1;8i
24.10 Stop Shift Equations d@f2Vxe7
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces [IBk-opap
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) Tn-]0hWkP
b e%*0lr
"[S
6w
Glossary tRBK1h
Reference FF!g9>
Index