"Modern Lens Design" 2nd Edition by Warren J. Smith gn#4az3@e>
+;pdG[N
Contents of Modern Lens Design 2nd Edition !2tZ@ p|
&D>e>]E|P
1 Introduction |AuN5|obI
1.1 Lens Design Books "M6:)h9jV
1.2 Reference Material Yep(,J~'
1.3 Specifications Zz,E4+'Rm
1.4 Lens Design q%"]}@a0
1.5 Lens Design Program Features '1|r+(q|2
1.6 About This Book HpuHJ#l
/) MzF6
2 Automatic Lens Design XQ%*U=)s
2.2 The Merit Function 70mQ{YNN
2.3 Local Minima RAR"9 N
.
2.4 The Landscape Lens S;MS,R
2.5 Types of Merit Function -?&wD["y
2.6 Stagnation H)G ^ Y1
2.7 Generalized Simulated Annealing O:q 0-
2.8 Considerations about Variables for Optimization ?msx
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems /Rb`^n#
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits | wKZ-6
2.11 Spectral Weighting N3TkRJZ
2.12 How to Get Started 8BhLO.(<O
&M*&oi (
3 Improving a Design J,_I$* _0
3.1 Lens Design Tip Sheet: Standard Improvement Techniques uK="#1z cC
3.2 Glass Changes ( Index and V Values ) IFH%R>={
3.3 Splitting Elements smF#'"{
3.4 Separating a Cemented Doublet J}hi)k
3.5 Compounding an Element Nf%jLK~
3.6 Vignetting and Its Uses (SfP3
3.7 Eliminating a Weak Element; the Concentric Problem e 9U\48
3.8 Balancing Aberrations 1K"``EvNB
3.9 The Symmetrical Principle Gc<J x|Q7
3.10 Aspheric Surfaces 5 b( [1*
3YR6@*!f/
4 Evaluation: How Good is This Design =oV8!d%]
4.1 The Uses of a Preliminary Evaluation c1'OIK C
4.2 OPD versus Measures of Performance h3h2 KqM'
4.3 Geometric Blur Spot Size versus Certain Aberrations j,8*Z~\5
4.4 Interpreting MTF - The Modulation Transfer Function Xl.h&x0?
8
4.5 Fabrication Considerations hT>h
&^8>Kd8
5 Lens Design Data Pv1C o:
5.1 About the Sample Lens Designs t IdH?x
5.2 Lens Prescriptions, Drawings, and Aberration Plots Ny/bNQS
5.3 Estimating the Potential of a Redesign B)Hs>Mh|W
5.4 Scaling a Desing, Its Aberrations, and Its MTF VTa?y
5.5 Notes on the Interpretation of Ray Intercept Plots @`t)ly#N
5.6 Various Evaluation Plot \( LKLlam
[9u/x%f(
6 Telescope Objective d7g/s'ZHt6
6.1 The Thin Airspaced Doublet aBj~370g
6.2 Merit Function for a Telescope Objective -IMm#
6.3 The Design of an f/7 Cemented Doublet Telescope Objective aEW
Z*y
6.4 Spherochromatism p{"p<XFyO
6.5 Zonal Spherical Aberration c BQ|mA
6.6 Induced Aberrations S)p{4`p%
6.7 Three-Element Objectives hY7Q$B<
6.8 Secondary Spectrum (Apochromatic Systems) Wct
+T,8
6.9 The Design of an f/7 Apochromatic Triplet Sd2R$r
6.10 The Diffractive Surface in Lens Design a.v$+}+.[,
6.11 A Final Note a\$PqOB!
JUok@6
7 Eyepieces and Magnifiers su<_?'uH
7.1 Eyepieces L[)+J2_<
7.2 A Pair of Magnifier Designs 6]Q
~c"+5
7.3 The Simple, Classical Eyepieces )NGBA."t
7.4 Design Story of an Eyepiece for a 6*30 Binocular :c"J$wT/
7.5 Four-Element Eyepieces c=<d99Cu!
7.6 Five-Element Eyepieces J*F-tRuEw
7.7 Very High Index Eyepiece/Magnifier 6A7UW7/
7.8 Six- and Seven-Element Eyepieces #IDDKUE
[Qa0uM#SU
8 Cooke Triplet Anastigmats KW+ps16~
8.1 Airspaced Triplet Anastigmats MeW8aLr
8.2 Glass Choice F=kD/GCB
8.3 Vertex Length and Residual Aberrations !!E_WDZ#9
8.4 Other Design Considerations f(=yC}si
8.5 A Plastic, Aspheric Triplet Camera Lens M@UkXA}
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet ^QTl (L
8.7 Possible Improvement to Our “Basic” Triplet 'D#}ce)s#
8.7 The Rear Earth (Lanthanum) Glasses y4$UPLm
8.9 Aspherizing the Surfaces A0# K@
8.10 Increasing the Element Thickness O?L_9L*
%?J\P@
9 Split Triplets KS}Ci-
j )Zi4<./
10 The Tessar, Heliar, and Other Compounded Triplets P1]ucu_y,
10.1 The Classic Tessar I&3L1rl3{*
10.2 The Heliar/Pentac
81V,yq]
10.3 The Portrait Lens and the Enlarger Lens _SjS^z~
10.4 Other Compounded Triplets ^ ]SS\=7
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar V=I au_
&_HSrU
11 Double-Meniscus Anastigmats =\e}fyuK
11.1 Meniscus Components Y=sRVypJ
11.2 The Hypergon, Totogon, and Metrogon HUr;ysw
11.3 A Two Element Aspheric Thick Meniscus Camera Lens b[$%Wg
11.4 Protar, Dagor, and Convertible Lenses Vj_(55WQ
11.5 The Split Dagor 8s-RNA>7^
11.6 The Dogmar z[b,:G
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens B++.tQ=X.
z{bMW^F
12 The Biotar or Double-Gauss Lens Za}*6N=?*
12.1 The Basic Six-Element Version f/H rO6~k%
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens ?t$sju(\
12.3 The Seven-Element Biotar - Split-Rear Singlet HWT0oh]
12.4 The Seven-Element Biotar - Broken Contact Front Doublet aDb@u3X@
12.5 The Seven-Element Biotar - One Compounded Outer Element ePa:_?(
12.6 The Eight-Element Biotar 8)Z WR3)+W
12.7 A “Doubled Double-Gauss” Relay ZZA!Y9ia2
t }7hD
13 Telephoto Lenses K~z*P0g*
13.1 The Basic Telephoto 9*GwW&M%1_
13.2 Close-up or Macro Lenses s+(%N8B
13.3 Telephoto Designs H[@uE*W
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch F#7ZR*ZB1
V^QKn+/
J5)e 7
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses J0a]Wz%
14.1 The Reverse Telephoto Principle cR}}N F
14.2 The Basic Retrofocus Lens p18-yt;
1
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Qh%/{6(u
7Gnslp?[U
15 Wide Angle Lenses with Negative Outer Lenses 9vWKyzMi
sqi~j(&\1
16 The Petzval Lens; Head-up Display Lenses yA?>v'K
16.1 The Petzval Portrait Lens YN?@ S
16.2 The Petzval Projection Lens \NhCu$'
16.3 The Petzval with a Field Flattener [&|Le;h
16.4 Very Height Speed Petzval Lenses BF<7.<,
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems /*`BGNkYY
.3?'+KZ,
17 Microscope Objectives >F8&wh'BjY
17.1 General Considerations k(C?6Gfj
17.2 Classic Objective Design Forms; The Aplanatic Front
*=ftg&
17.3 Flat-Field Objectives zwR@^ 5^6
17.4 Reflecting Objectives NLyvi,svS
17.5 The Microscope Objective Designs fKOm\R47
`~UCWK
18 Mirror and Catadioptric Systems I+D`\OSL
18.1 The Good and Bad Points of Mirrors DBAJkBs
18.2 The Classic Two-Mirror Systems IJ!]1fXy+
18.3 Catadioptric Systems d8<Lk9H9R
18.4 Aspheric Correctors and Schmidt Systems `]\4yTd
18.5 Confocal Paraboloids ~'dnrhdme
18.6 Unobscured Systems E"!9WF(2t5
18.7 Design of a Schmidt-Cassegrain “from Scratch” BnvUPDT&
pu=T
pSZ
19 Infrared and Ultraviolet Systems 1B'i7
19.1 Infrared Optics V[wEn9
19.2 IR Objective Lenses B, xrZ s
19.3 IR Telescope 0! 9vGs
19.4 Laser Beam Expanders K6KEdXM4
19,5 Ultraviolet Systems vY *p][$
19.6 Microlithographic Lenses B7nMyoj
Bjml%
20 Zoom Lenses l<PGUm:_
20.1 Zoom Lenses +'>N]|Z
20.2 Zoom Lenses for Point and Shoot Cameras YP>VC(f
20.3 A 20X Video Zoom Lens @pQv}%
20.4 A Zoom Scanner Lens =}\]i*
20.5 A Possible Zoom Lens Design Procedure w4'(Y,(`
'97)c7E
21 Projection TV Lenses and Macro Lenses V:6#IL
21.1 Projection TV Lenses >r{3t{
21.2 Macro Lenses mvVVPf9
^c< <I-o|
22 Scanner/ , Laser Disk and Collimator Lenses u9:;ft{}N
22.1 Monochromatic Systems \cPGyeq
22.2 Scanner Lenses c[!e*n!y
22.3 Laser Disk, Focusing, and Collimator Lenses +6*oO|
SjKIn-
23 Tolerance Budgeting $%;NX[>j
23.1 The Tolerance Budget 4S 2I]d
23.2 Additive Tolerances }CsUZ&* &
23.3 Establishing the Tolerance Budget VPys
+
h`:qB
24 Formulary [aO"9
24.1 Sign Conventions, Symbols, and Definitions Mki(,Y|1~
24.2 The Cardinal Points ?8-e@/E#x
24.3 Image Equations +hY/4Tx<
24.4 Paraxial Ray Tracing (Surface by Surface) on*?O O'
24.5 Invariants TmKO/N@}
24.6 Paraxial Ray Tracing (Component by Component) jt"p Js'
24.7 Two-Componenet Relationships vH#
US
24.8 Third-Order Aberrations – Surface Contributions #Q 2$v;
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs ^>GL<1
1
24.10 Stop Shift Equations PHDKx+$
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces 1dfA
8=L,s
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) PfnhE>[>cf
Vt
n$*ML
$Y$!nPO
Glossary zY[6Ia{L
Reference 4E4o=Z|K
Index