"Modern Lens Design" 2nd Edition by Warren J. Smith hKj"Lb9]
u6j\@U6 I
Contents of Modern Lens Design 2nd Edition ED[`Y.;
Yjx*hv&?
1 Introduction %#7Yr(&
1.1 Lens Design Books eX;C.[&7;8
1.2 Reference Material fL>>hBCqC
1.3 Specifications x 8|sdZFxo
1.4 Lens Design &z8I@^<
1.5 Lens Design Program Features e@|/, W
1.6 About This Book 5ELKL#(
5srj|'ja
2 Automatic Lens Design n$&xVaF|
2.2 The Merit Function [oqb@J2
2.3 Local Minima !N ua
2.4 The Landscape Lens z)*7LI
2.5 Types of Merit Function b\&|030+
2.6 Stagnation RsU!mYs:H
2.7 Generalized Simulated Annealing 9Kf# jZ
2.8 Considerations about Variables for Optimization 8K$q6V%#
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems _\uyS',
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits @
W[LA<
2.11 Spectral Weighting '[V}]Z>-
2.12 How to Get Started G;Jqby8d
HY|=Z\l"
3 Improving a Design aAJ'0xnj
3.1 Lens Design Tip Sheet: Standard Improvement Techniques M@%$9N)gd
3.2 Glass Changes ( Index and V Values ) g?-HAk6
3.3 Splitting Elements >LS*G
qjq
3.4 Separating a Cemented Doublet FyY<Vx'yQ
3.5 Compounding an Element 6_1v~#
3.6 Vignetting and Its Uses 6d4)7PL
3.7 Eliminating a Weak Element; the Concentric Problem jG~zpZh
3.8 Balancing Aberrations ;]XK e')
3.9 The Symmetrical Principle *c<0cHv*
3.10 Aspheric Surfaces A"ApWJ3
NFxs4:]
RT
4 Evaluation: How Good is This Design ':Avh|q3N
4.1 The Uses of a Preliminary Evaluation lM/)<I\8
4.2 OPD versus Measures of Performance _ljdo`j#N
4.3 Geometric Blur Spot Size versus Certain Aberrations 2g?O+'JD
4.4 Interpreting MTF - The Modulation Transfer Function *% 6NuZ
4.5 Fabrication Considerations +OM`c7M:
$=) i{kGS@
5 Lens Design Data o$disJ
5.1 About the Sample Lens Designs bUJ5jkZ)
5.2 Lens Prescriptions, Drawings, and Aberration Plots UM[<v9NWE
5.3 Estimating the Potential of a Redesign n^kszIu~
5.4 Scaling a Desing, Its Aberrations, and Its MTF "'i" @CR
5.5 Notes on the Interpretation of Ray Intercept Plots (?[^##03MN
5.6 Various Evaluation Plot (x"TM),Q
tw{V7r~n
6 Telescope Objective r92C^h0
6.1 The Thin Airspaced Doublet y<#?z 8P
6.2 Merit Function for a Telescope Objective GP|G[
6.3 The Design of an f/7 Cemented Doublet Telescope Objective 6h8fzqRzc
6.4 Spherochromatism 3JnBKh\n
6.5 Zonal Spherical Aberration e[`u:
6.6 Induced Aberrations .~>Uh3S
6.7 Three-Element Objectives
LY>-kz]
6.8 Secondary Spectrum (Apochromatic Systems) 7NG^I6WP-
6.9 The Design of an f/7 Apochromatic Triplet !w+A3Z>V
6.10 The Diffractive Surface in Lens Design r0 mXRZC
6.11 A Final Note #A&(b}#:o
~D[5AXV`^
7 Eyepieces and Magnifiers IG}`~% Z
7.1 Eyepieces _DlkTi5(w
7.2 A Pair of Magnifier Designs 4&TTPcSt;
7.3 The Simple, Classical Eyepieces +aa( YGL
7.4 Design Story of an Eyepiece for a 6*30 Binocular gA`x-`
7.5 Four-Element Eyepieces /d<"{\o
7.6 Five-Element Eyepieces ?uiQ'}
7.7 Very High Index Eyepiece/Magnifier ]6#7TT
7.8 Six- and Seven-Element Eyepieces 9t `
-&3WN!egq
8 Cooke Triplet Anastigmats w"p,6Ew
8.1 Airspaced Triplet Anastigmats <X5'uve
8.2 Glass Choice :
5=E>!
8.3 Vertex Length and Residual Aberrations zQ[g*
8.4 Other Design Considerations @%8Xa7+
8.5 A Plastic, Aspheric Triplet Camera Lens Mwm=r//
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet '%k<? *
8.7 Possible Improvement to Our “Basic” Triplet ^Md]e<WAp
8.7 The Rear Earth (Lanthanum) Glasses XI>|"*-l
8.9 Aspherizing the Surfaces =v(MdjwFl
8.10 Increasing the Element Thickness ]yzqBbV
.Fdqn?c|+
9 Split Triplets z?a<&`W
q '6gj
10 The Tessar, Heliar, and Other Compounded Triplets N;)Y+amg^
10.1 The Classic Tessar [8T
10.2 The Heliar/Pentac JjH#,@'.
10.3 The Portrait Lens and the Enlarger Lens v&.`^O3W
10.4 Other Compounded Triplets 1Tn0$+$.4
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar H*SEzVb
W> ZL[BQ
11 Double-Meniscus Anastigmats CTqAhL 4}
11.1 Meniscus Components ]6PX4oK_t
11.2 The Hypergon, Totogon, and Metrogon n9qO;X4&
11.3 A Two Element Aspheric Thick Meniscus Camera Lens vSu|!Xb]
11.4 Protar, Dagor, and Convertible Lenses ^iWcuh_n
11.5 The Split Dagor < C{-ph
11.6 The Dogmar vXdz?
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens T2;%@Ghc
s|/m}n
12 The Biotar or Double-Gauss Lens 8(.DI/
12.1 The Basic Six-Element Version ah82S)a`}
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens =U:9A=uEvS
12.3 The Seven-Element Biotar - Split-Rear Singlet FW?zJ
12.4 The Seven-Element Biotar - Broken Contact Front Doublet Nk~Xz
12.5 The Seven-Element Biotar - One Compounded Outer Element gH{X?
12.6 The Eight-Element Biotar zw13Tu
12.7 A “Doubled Double-Gauss” Relay D4CN%^?
bu;3Ib3\
13 Telephoto Lenses Y}'8`.
13.1 The Basic Telephoto &}TfJ=gj
13.2 Close-up or Macro Lenses uxbDRlOS
13.3 Telephoto Designs 3$]SP1Mc(
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch M"q]jeaM
rZ.,\ X_
fxW,S
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses h)O<bI8
14.1 The Reverse Telephoto Principle }~8/a3
14.2 The Basic Retrofocus Lens mLa0BIP
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses Qv3g
4iJ
(IAc*V~
15 Wide Angle Lenses with Negative Outer Lenses q>$[<TsE&}
%?o@YwBo^E
16 The Petzval Lens; Head-up Display Lenses mw^Di
16.1 The Petzval Portrait Lens uO4kCK<7C
16.2 The Petzval Projection Lens RVlAWw(
16.3 The Petzval with a Field Flattener )gO=5_^u*o
16.4 Very Height Speed Petzval Lenses Z */*P4\
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems 9u3~s<
@iC,0AK4k
17 Microscope Objectives X>i`z
17.1 General Considerations SvlS4C
17.2 Classic Objective Design Forms; The Aplanatic Front S C'F,!
17.3 Flat-Field Objectives /xK5%cE>B
17.4 Reflecting Objectives gk%8iT
17.5 The Microscope Objective Designs Bld%d:i
R~jV
18 Mirror and Catadioptric Systems Q?Au.q],
18.1 The Good and Bad Points of Mirrors x]({Po4
18.2 The Classic Two-Mirror Systems ?[[K6v}q{
18.3 Catadioptric Systems p1dqDgF*
18.4 Aspheric Correctors and Schmidt Systems ^7l.!s#$b
18.5 Confocal Paraboloids 0(owFNUBs
18.6 Unobscured Systems v>vU]6l
18.7 Design of a Schmidt-Cassegrain “from Scratch” ELx?ph -9
Dxc`K?M
19 Infrared and Ultraviolet Systems NW}kvZ
19.1 Infrared Optics 'O#,;n
19.2 IR Objective Lenses ? WD|a(
19.3 IR Telescope Cm4$&?
19.4 Laser Beam Expanders <lk_]+ XJ3
19,5 Ultraviolet Systems *{5L*\AZ
19.6 Microlithographic Lenses GN36:>VWb
S #M<d~rK
20 Zoom Lenses *^'$YVd#
20.1 Zoom Lenses *fBI),bZa
20.2 Zoom Lenses for Point and Shoot Cameras PB
!\r}Q
20.3 A 20X Video Zoom Lens UX-l`ygl
20.4 A Zoom Scanner Lens e`1,jt'
20.5 A Possible Zoom Lens Design Procedure O*af`J{
{C=d9z~:
21 Projection TV Lenses and Macro Lenses )^&,[Q=i
21.1 Projection TV Lenses m6qmZ2<
21.2 Macro Lenses 5t$ZEp-
.x__X3P>\
22 Scanner/ , Laser Disk and Collimator Lenses >$gWeFu
22.1 Monochromatic Systems cJ 5":^O
22.2 Scanner Lenses :K!@zT=o
22.3 Laser Disk, Focusing, and Collimator Lenses TQx''$j\
W\{gBjfE
23 Tolerance Budgeting []K5l%
23.1 The Tolerance Budget w%,Iy,G@
23.2 Additive Tolerances k~ZwHx(%S
23.3 Establishing the Tolerance Budget {5+t\~q$
xg~
Baun
24 Formulary =1o_:VOG
24.1 Sign Conventions, Symbols, and Definitions jW6~^>S
24.2 The Cardinal Points PI7M3\z
24.3 Image Equations {nH.
_
24.4 Paraxial Ray Tracing (Surface by Surface) Pnb?NVP!^9
24.5 Invariants f-5vE9G3y7
24.6 Paraxial Ray Tracing (Component by Component) dQ*3s>B[
24.7 Two-Componenet Relationships &~
g||rq
24.8 Third-Order Aberrations – Surface Contributions YaTJKgi"0
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs <Bc J;X/
24.10 Stop Shift Equations f\oB/
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces ffGiNXCM
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) 89F^I"Im(
EthnI7Y
E<>Ev_5 >
Glossary \NbMS C&H
Reference RdlcJxM
Index