"Modern Lens Design" 2nd Edition by Warren J. Smith qdm5dQ (c
_WtX8
Contents of Modern Lens Design 2nd Edition O[y.3>l[s
)mxY]W+
1 Introduction /L'm@8
1.1 Lens Design Books RfDIwkpp
1.2 Reference Material CjORL'3
1.3 Specifications rX%#Q\0h
1.4 Lens Design O\pqZ`E=s
1.5 Lens Design Program Features h1G]w/.ws
1.6 About This Book ~-lIOQ.v
ST)l0c+Y>
2 Automatic Lens Design z|F>+6l"Y7
2.2 The Merit Function b*qkox;j
2.3 Local Minima )-|A|1Uo
2.4 The Landscape Lens NWNH)O@
2.5 Types of Merit Function REB8_ H"
2.6 Stagnation j[m\;3Sp
2.7 Generalized Simulated Annealing W"AWhi{h
2.8 Considerations about Variables for Optimization KM< +9`
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems !V$nU8p|
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits jii2gtu'U
2.11 Spectral Weighting *ZyIbT
2.12 How to Get Started G{}E~jDi?
_s (0P*
3 Improving a Design 9c9-1iS
3.1 Lens Design Tip Sheet: Standard Improvement Techniques >},O_qx
3.2 Glass Changes ( Index and V Values ) T,Cq;|g5E
3.3 Splitting Elements U }MU>kzb
3.4 Separating a Cemented Doublet +`u]LOAyP=
3.5 Compounding an Element 468LVe?0
3.6 Vignetting and Its Uses Usk@{
3.7 Eliminating a Weak Element; the Concentric Problem U# Y?'3 :
3.8 Balancing Aberrations {z|0Y&>[=
3.9 The Symmetrical Principle 39S}/S)
3.10 Aspheric Surfaces %MU<S9k
,AGK O,w
4 Evaluation: How Good is This Design FoWE<
4.1 The Uses of a Preliminary Evaluation `x~k}
4.2 OPD versus Measures of Performance LpaY Md;
4.3 Geometric Blur Spot Size versus Certain Aberrations 5dT-{c%w4
4.4 Interpreting MTF - The Modulation Transfer Function g10$pf+L
4.5 Fabrication Considerations .hn{m9|U
Q/\
<r G4
5 Lens Design Data &\. LhOm
5.1 About the Sample Lens Designs `5<
5.2 Lens Prescriptions, Drawings, and Aberration Plots ;"!dq)
5.3 Estimating the Potential of a Redesign hUSr1jlA
5.4 Scaling a Desing, Its Aberrations, and Its MTF rl'YyO}2
5.5 Notes on the Interpretation of Ray Intercept Plots *W y0hnr;]
5.6 Various Evaluation Plot l6Ze6X I
})T}e7>T
6 Telescope Objective Xp1xhb*^
6.1 The Thin Airspaced Doublet g~h`wv'
6.2 Merit Function for a Telescope Objective ]x:>~0/L
6.3 The Design of an f/7 Cemented Doublet Telescope Objective }C"EkT!F
6.4 Spherochromatism u]@``Zb|
6.5 Zonal Spherical Aberration G'MYTq
6.6 Induced Aberrations A;1<P5lo
6.7 Three-Element Objectives (NOAHV0H
6.8 Secondary Spectrum (Apochromatic Systems) r-^Ju6w{
6.9 The Design of an f/7 Apochromatic Triplet yC
=5/wy`
6.10 The Diffractive Surface in Lens Design 0@C`QW%m
6.11 A Final Note J;+tQ8,AP
z[0L?~$
7 Eyepieces and Magnifiers "^;'.~@e8
7.1 Eyepieces }/x `w
7.2 A Pair of Magnifier Designs r&A#h;EQX2
7.3 The Simple, Classical Eyepieces &sR{3pC}
7.4 Design Story of an Eyepiece for a 6*30 Binocular .(VxeF(v_k
7.5 Four-Element Eyepieces <\8dh(>
7.6 Five-Element Eyepieces Itr yiU9
7.7 Very High Index Eyepiece/Magnifier ;Y?7|G97*S
7.8 Six- and Seven-Element Eyepieces Cj"k
Fq4
KNC!T@O|{#
8 Cooke Triplet Anastigmats ~)tIO<$U
8.1 Airspaced Triplet Anastigmats SgAY/#
8.2 Glass Choice Os*,@N3t
8.3 Vertex Length and Residual Aberrations @,CCwiF'q
8.4 Other Design Considerations qXt2m
8.5 A Plastic, Aspheric Triplet Camera Lens ?q7VB
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet c;Hf +n
8.7 Possible Improvement to Our “Basic” Triplet *^=`HE89S
8.7 The Rear Earth (Lanthanum) Glasses *hF5cM[
8.9 Aspherizing the Surfaces ORs<<H.d
8.10 Increasing the Element Thickness /_xwHiA
&e7yX
9 Split Triplets r|fJ~0z
0+P_z(93?
10 The Tessar, Heliar, and Other Compounded Triplets ]Q-ON&/
10.1 The Classic Tessar ~4=4Ks0
10.2 The Heliar/Pentac |bi"J;y
10.3 The Portrait Lens and the Enlarger Lens -1Lh="US
10.4 Other Compounded Triplets OC#o JwC
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar @+syD
g`y
>)N/
11 Double-Meniscus Anastigmats d5T0#ue/e
11.1 Meniscus Components #i7!
11.2 The Hypergon, Totogon, and Metrogon &~6Z)}
11.3 A Two Element Aspheric Thick Meniscus Camera Lens NlU:e}zGR
11.4 Protar, Dagor, and Convertible Lenses q_g'4VZv
11.5 The Split Dagor 5f=e
JDo=x
11.6 The Dogmar _Jj|g9b
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens $A7[?Ai ?
O#H `/z
12 The Biotar or Double-Gauss Lens qK:.j
12.1 The Basic Six-Element Version M98dQ%4I
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens y{?
6U>_
12.3 The Seven-Element Biotar - Split-Rear Singlet \'GX^0yK
12.4 The Seven-Element Biotar - Broken Contact Front Doublet cwz
% LKh
12.5 The Seven-Element Biotar - One Compounded Outer Element mz+>rc
12.6 The Eight-Element Biotar ?T$i
12.7 A “Doubled Double-Gauss” Relay >
9JzYI^
Zu$f-_"
13 Telephoto Lenses lc>nUhj.
13.1 The Basic Telephoto .',ikez
13.2 Close-up or Macro Lenses qX0IHe
13.3 Telephoto Designs \qUmdN{FU
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch s+yBxgQ/
=5oFutg`
!!o69
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses lk}R#n$
14.1 The Reverse Telephoto Principle ^gw_Up<e6
14.2 The Basic Retrofocus Lens Dd!MG'%hlb
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses rP2^D[uM.
zIH[
:
15 Wide Angle Lenses with Negative Outer Lenses ^\e:j7@z
Y_p
16 The Petzval Lens; Head-up Display Lenses `;hsOfo
16.1 The Petzval Portrait Lens ;T"}dJel#
16.2 The Petzval Projection Lens fF_1ZKx+#!
16.3 The Petzval with a Field Flattener S%Pk@n`z]
16.4 Very Height Speed Petzval Lenses |I^\|5
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems dB<BEe\$g.
n4>
17 Microscope Objectives {Ylj]
17.1 General Considerations =XQ3sk6U
17.2 Classic Objective Design Forms; The Aplanatic Front <Sm=,Sw
17.3 Flat-Field Objectives C(}9
17.4 Reflecting Objectives ^^jF*)DT@
17.5 The Microscope Objective Designs H3QAIsGS
@K4} cP
18 Mirror and Catadioptric Systems MZn7gT0
18.1 The Good and Bad Points of Mirrors 'RQZU*8
18.2 The Classic Two-Mirror Systems O*H:CW
18.3 Catadioptric Systems {KeHqM}e
18.4 Aspheric Correctors and Schmidt Systems 0w8Id
. ,
18.5 Confocal Paraboloids ;?=nr 5;q
18.6 Unobscured Systems <C+:hsS=
18.7 Design of a Schmidt-Cassegrain “from Scratch” -gIuL
&KbtW_
19 Infrared and Ultraviolet Systems #c+N}eX{
19.1 Infrared Optics p
tv
19.2 IR Objective Lenses [5)1
4%
x
19.3 IR Telescope v^[tK2&v
19.4 Laser Beam Expanders `Wn0v2@a(~
19,5 Ultraviolet Systems pF K[b
19.6 Microlithographic Lenses asQ pVP
Yah3I@xGy
20 Zoom Lenses Y'Wj7P
20.1 Zoom Lenses 1^!=J<`K;
20.2 Zoom Lenses for Point and Shoot Cameras E2X
K hW
20.3 A 20X Video Zoom Lens wh|[
"U('
20.4 A Zoom Scanner Lens L@CN0ezQs
20.5 A Possible Zoom Lens Design Procedure KOhy)h+ h
-CtA\<7I
21 Projection TV Lenses and Macro Lenses |rW}s+Kcr
21.1 Projection TV Lenses P%'bSx1
21.2 Macro Lenses B V+"uF
R!*UU'se
22 Scanner/ , Laser Disk and Collimator Lenses M(b'4
22.1 Monochromatic Systems DXSZ#^,S[W
22.2 Scanner Lenses Q`5jEtu#,
22.3 Laser Disk, Focusing, and Collimator Lenses gWy2$)
Y8m|f
23 Tolerance Budgeting =c-j4xna>
23.1 The Tolerance Budget ?.\CUVK
23.2 Additive Tolerances MA(\r
23.3 Establishing the Tolerance Budget wMt?yc:X
fAUtqkB
24 Formulary zclt2?
24.1 Sign Conventions, Symbols, and Definitions `9a%}PVQ-
24.2 The Cardinal Points P8DJv-f`
24.3 Image Equations hS*3yCE"8
24.4 Paraxial Ray Tracing (Surface by Surface) +wD--24!(
24.5 Invariants iP|h] ;a+@
24.6 Paraxial Ray Tracing (Component by Component) nHD4J;l
24.7 Two-Componenet Relationships Z=825[p
24.8 Third-Order Aberrations – Surface Contributions e`k
2g^
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs hP3I_I[qF}
24.10 Stop Shift Equations k-e_lSYk&c
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces J24UUZ9&$
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) MCL?J,1?r
ua`2
&;T=
3z\:{yl
Glossary Z7k {7
Reference wbd>By(T1
Index