"Modern Lens Design" 2nd Edition by Warren J. Smith NDg]s2T
+.N;h-'
Contents of Modern Lens Design 2nd Edition ks r5P~
EmUxM_T/2
1 Introduction A0]o/IBz
1.1 Lens Design Books 2ga}d5lu
1.2 Reference Material 6)3eB{$;
1.3 Specifications IWWFl6$-
1.4 Lens Design 0sUc6_>e
1.5 Lens Design Program Features :5*<QJuI#A
1.6 About This Book *C:+N>
> Qtyw.n
2 Automatic Lens Design E, v1F!
2.2 The Merit Function b>7ts_b
2.3 Local Minima 19rUvgC{M
2.4 The Landscape Lens AO]lXa
2.5 Types of Merit Function |X.z|wKT6
2.6 Stagnation nB]Q^~jX
2.7 Generalized Simulated Annealing i4pJIb
2.8 Considerations about Variables for Optimization ?oJ~3Kg
2.9 How to Increase the Speed or Field of a System and Avoid Ray Failure Problems {+[gf:Ev
2.10 Test Plate Fits, Melt Fits, Thickness Fits and Reverse Aberration Fits IW1\vfe
2.11 Spectral Weighting Kje+Niz7
2.12 How to Get Started ~ZNhU;%YW
5`uS<[vA
3 Improving a Design 9F+bWo_m
3.1 Lens Design Tip Sheet: Standard Improvement Techniques G6,8Xwk
3.2 Glass Changes ( Index and V Values ) }M7kApb>Y
3.3 Splitting Elements GMNb;D(>K
3.4 Separating a Cemented Doublet C5M-MZaS
3.5 Compounding an Element 1v4kN
-
3.6 Vignetting and Its Uses mTPj@F>
3.7 Eliminating a Weak Element; the Concentric Problem D1n2Z:9
3.8 Balancing Aberrations :kVV.a#g
3.9 The Symmetrical Principle 0?7uqS#L
3.10 Aspheric Surfaces )2$_:Ek
o{he)r6)_
4 Evaluation: How Good is This Design {_~G+rqY
4.1 The Uses of a Preliminary Evaluation %:,=J
4.2 OPD versus Measures of Performance 8bGq"!w-
4.3 Geometric Blur Spot Size versus Certain Aberrations ,$]q2aL
4.4 Interpreting MTF - The Modulation Transfer Function _+N^yw ,r*
4.5 Fabrication Considerations X]fw9tZ
)
G{v>Z,
5 Lens Design Data DPwSg\*)
5.1 About the Sample Lens Designs f3N:MH-c
5.2 Lens Prescriptions, Drawings, and Aberration Plots zEB1Br,
5.3 Estimating the Potential of a Redesign U.aa iX7
5.4 Scaling a Desing, Its Aberrations, and Its MTF IebS~N
E
5.5 Notes on the Interpretation of Ray Intercept Plots z~H Gc"~
5.6 Various Evaluation Plot N>R%0m<e
p.9v<I%0
6 Telescope Objective 8j'*IRj*q
6.1 The Thin Airspaced Doublet O0~d6Ba
6.2 Merit Function for a Telescope Objective c-.>C)
6.3 The Design of an f/7 Cemented Doublet Telescope Objective m%[t&^b}T
6.4 Spherochromatism =5ih,>>g
6.5 Zonal Spherical Aberration FZ9<Q
6.6 Induced Aberrations 'oz={;
6.7 Three-Element Objectives ;*2e;m~)?
6.8 Secondary Spectrum (Apochromatic Systems) j''Iai_
6.9 The Design of an f/7 Apochromatic Triplet i .N1Cvp&
6.10 The Diffractive Surface in Lens Design 'y?|shV{]
6.11 A Final Note gDub+^ye>/
>, E$bm2
7 Eyepieces and Magnifiers swlWe}1
7.1 Eyepieces &-fx=gq=
7.2 A Pair of Magnifier Designs @?m8/t9.
7.3 The Simple, Classical Eyepieces N%f!B"NQ
7.4 Design Story of an Eyepiece for a 6*30 Binocular x+cF1N2.
7.5 Four-Element Eyepieces GC[{=]}9U
7.6 Five-Element Eyepieces b8.%? _?
7.7 Very High Index Eyepiece/Magnifier ;J(,F:N
7.8 Six- and Seven-Element Eyepieces LJwM M
2 ?T:RB}
8 Cooke Triplet Anastigmats *Zi%Q[0Me
8.1 Airspaced Triplet Anastigmats ik*)j
8.2 Glass Choice !Blk=L+p
8.3 Vertex Length and Residual Aberrations />Vx*^u8Hz
8.4 Other Design Considerations HF: T]n,
8.5 A Plastic, Aspheric Triplet Camera Lens io{H$ x(
8.6 Camera Lens Anastigmatism Design “from Scrach” – The Cooke Triplet 5j,qAay9
8.7 Possible Improvement to Our “Basic” Triplet &fW=5'
8.7 The Rear Earth (Lanthanum) Glasses Z9&D'n)
8.9 Aspherizing the Surfaces B)]{]z0+`
8.10 Increasing the Element Thickness Qe$>Jv5
5%+}rSn7
9 Split Triplets 3Jm'q,TC
/:`
i%E
10 The Tessar, Heliar, and Other Compounded Triplets SECQVA_y`
10.1 The Classic Tessar P\4tK<P|
10.2 The Heliar/Pentac 5ek%d
10.3 The Portrait Lens and the Enlarger Lens _IV@^v
10.4 Other Compounded Triplets `b ")Bx|
10.5 Camera Lens Anastigmat Design “from Scratch” – The Tessar and Heliar dB+GTq=6f
X8
)>}#:
11 Double-Meniscus Anastigmats TucAs0-bF
11.1 Meniscus Components _S2^;n?
11.2 The Hypergon, Totogon, and Metrogon 4spaw?j
11.3 A Two Element Aspheric Thick Meniscus Camera Lens n&m?BuG
11.4 Protar, Dagor, and Convertible Lenses 5@D7/$bLp
11.5 The Split Dagor @xm~T|[7
11.6 The Dogmar Ws*PMK.0
11.7 Camera Lens Anastigmat Design “from Scratch” – The Dogmar Lens o,Zng4NY
$SzCVWS
12 The Biotar or Double-Gauss Lens @zynqh
12.1 The Basic Six-Element Version wUCDJY:,1
12.2 28 Things You Should Know about the Double-Gauss/Biotar Lens 7ml0
12.3 The Seven-Element Biotar - Split-Rear Singlet /QXs-T}d
12.4 The Seven-Element Biotar - Broken Contact Front Doublet ; G59}d
p~
12.5 The Seven-Element Biotar - One Compounded Outer Element <W51 oO
12.6 The Eight-Element Biotar {vT55i<mk
12.7 A “Doubled Double-Gauss” Relay j]B$(pt
>?9 WeXG
13 Telephoto Lenses sRyw\v-=P
13.1 The Basic Telephoto {,f!'i&b@
13.2 Close-up or Macro Lenses rrY{Jf9>
13.3 Telephoto Designs +B q}>
13.4 Design of a 200-mm f/4 Telephoto for a 35-mm Camera from Scratch mU+FQX
ZC5Yve8
0"^oTmQN
14 Reversed Telescope (Retrofocus and Fish-Eye) Lenses j t`p<gI
14.1 The Reverse Telephoto Principle TFC!u0Y"$
14.2 The Basic Retrofocus Lens 22/?JWL>
14.3 Fish-Eye, or Extreme Wide-Angle Reverse Telephoto, Lenses }1]!#yMfq
`,-hG
15 Wide Angle Lenses with Negative Outer Lenses sMfFm@\ N
{ 1@4}R4
16 The Petzval Lens; Head-up Display Lenses #HM\a
16.1 The Petzval Portrait Lens 9<A\npD
16.2 The Petzval Projection Lens 8q~FUJhU
16.3 The Petzval with a Field Flattener Wt+y-ES
16.4 Very Height Speed Petzval Lenses ;V"yMWjc
16.5 Head-up Display (HUD) Lenses, Biocular Lenses, and Head/Helmet Mounted Display(HMD) Systems *mQDS.'AB@
) qyx|D
17 Microscope Objectives moVa'1ul
17.1 General Considerations }&(E#*>x
17.2 Classic Objective Design Forms; The Aplanatic Front lNaez3
17.3 Flat-Field Objectives 2[LX\
17.4 Reflecting Objectives LN.Bd,
17.5 The Microscope Objective Designs ?BDlB0jxzi
?b@q5Y
18 Mirror and Catadioptric Systems :n+y/6*
18.1 The Good and Bad Points of Mirrors uq|vNLW26
18.2 The Classic Two-Mirror Systems r%TLv
18.3 Catadioptric Systems AY&9JSu6
18.4 Aspheric Correctors and Schmidt Systems n~,]KdU]
18.5 Confocal Paraboloids P^b:?%
18.6 Unobscured Systems t*Vao
18.7 Design of a Schmidt-Cassegrain “from Scratch” ycrh5*g
i9&K
19 Infrared and Ultraviolet Systems F8uRT&m B0
19.1 Infrared Optics 6`DwEs?Y{
19.2 IR Objective Lenses qD(fYOX{C
19.3 IR Telescope $_ix6z
19.4 Laser Beam Expanders *h*j%
19,5 Ultraviolet Systems FtFv<UV
19.6 Microlithographic Lenses "$~}'`(]
;/?Z<[B
20 Zoom Lenses v7o?GQ75
20.1 Zoom Lenses *or2
20.2 Zoom Lenses for Point and Shoot Cameras :$M9XZ~\
20.3 A 20X Video Zoom Lens vz;7} Zj]
20.4 A Zoom Scanner Lens jU]]:S4xD/
20.5 A Possible Zoom Lens Design Procedure -uv
9(r\P
M.xhVgFf)
21 Projection TV Lenses and Macro Lenses J.bFv/R
21.1 Projection TV Lenses P\q <d
21.2 Macro Lenses lBlSNDs
u [V4OU}%
22 Scanner/ , Laser Disk and Collimator Lenses 3 {NaZIk
22.1 Monochromatic Systems a1
46kq
22.2 Scanner Lenses lL:KaQ 0E
22.3 Laser Disk, Focusing, and Collimator Lenses )|U_Z"0H^
'DCKD4@C/
23 Tolerance Budgeting LyuSZa]
23.1 The Tolerance Budget f$1Gu
23.2 Additive Tolerances --in+
23.3 Establishing the Tolerance Budget w8 ?Pb$Fe
l-<3{!
24 Formulary v%H"_T
24.1 Sign Conventions, Symbols, and Definitions &Pu+(~'Q
24.2 The Cardinal Points C6K|:IK{
24.3 Image Equations g(-;_j!=
24.4 Paraxial Ray Tracing (Surface by Surface) o,?!"*EP
24.5 Invariants K-2.E
24.6 Paraxial Ray Tracing (Component by Component) 4*0:bhhhf_
24.7 Two-Componenet Relationships Rr o?q
24.8 Third-Order Aberrations – Surface Contributions $Cz1C
24.9 Third-Order Aberrations – Thin Lens Contributions; The G Sum Eqs c=b+g+*xd
24.10 Stop Shift Equations rnnX|}J
24.11 Third-Order Aberrations – Contributions from Aspheric Surfaces [NHg&R H
24.12 Conversion of Aberrations to Wavefront Deformation (OPD) |. J,8~x
- *:p.(c
^y&q5p jj
Glossary t2=a(N-/,
Reference nGq]$h
Index