切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 什么是飞秒激光?

    作者:佚名 来源:激光行业观察 时间:2022-08-18 19:51 阅读:4253 [投稿]
    飞秒激光脉冲可以从两种材料之间的界面或任何非中心对称的材料中产生少量的二次谐波光。产生的二次谐波光信号可以无损检测和成像半导体晶圆表面上下的特征,例如结构缺陷、薄膜质量,甚至微量金属污染。

    高数值孔径光学器件将飞秒激光束聚焦到微小的腰部,超快脉冲的峰值功率足以驱动双光子吸收。增材制造技术可提供亚微米空间分辨率,并可创建小至 100 nm 的特征。由 Wildman 实验室/诺丁汉大学提供。

    虽然 SHG 和 THG 显微镜需要飞秒激光,但在可见光或紫外线波长下工作的连续波激光也可以激发这些天然荧光团,但会以一定的成像深度和细胞损伤的可能性为代价。因此,飞秒激发的优势是显而易见的。

    关键的内源性荧光团包括还原型烟酰胺腺嘌呤二核苷酸 (NADH) 和黄素腺嘌呤二核苷酸 (FAD)——可用作癌症特征的代谢物。众所周知,癌细胞优先使用糖酵解而不是氧化磷酸化来满足其能量需求。当比较正常细胞和癌细胞时,这表现在 NADH 与 FAD 的比率存在明显差异。NADH 被 700 至 800 nm 波长的双光子吸收有效激发,FAD 的吸收光谱延伸至 890 nm。

    利用这些代谢物的早期研究依赖于两种不同的超快激光波长,这对于诊断或护理点工作是不切实际的。幸运的是,在过去的几年里,研究人员已经证明,在 780 到 800 nm 窗口中运行的单个超快激光器可以以相似的效率激发和成像这两种物种,因为 NADH 更强的荧光也可以在“红色”处激发其频谱的尽头。此外,同样的研究人员证明,以这种方式获得的 NADH/FAD 比率是两种不同前列腺癌细胞系2的可靠标志物。

    同样,在 780 nm 下工作的最新紧凑型飞秒激光器非常适合这一潜在非常重要的应用。与双光子聚合一样,无标记体内成像的其他相关激光参数包括出色的光束质量以最大限度地提高空间分辨率、短脉冲宽度以最大限度地降低荧光所需的平均激光功率,以及用于简化扫描过程的内部功率控制——例如,用于光栅扫描期间的消隐。

    先进的晶圆计量

    事实证明,超快激光器在先进晶圆计量领域也越来越重要。一套成熟的技术,称为皮秒激光声学 (PLA),可测量层厚度并对不透明层下的关键对准标记进行成像。后一种能力在多层光刻工艺中很重要。

    在 PLA 方法中,激光脉冲(即泵浦)的吸收产生从激光表面向内传播的声波。下层和结构将其中一些声能反射回表面,在表面通过第二个激光脉冲(即探头)的反射率变化来检测。


    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评

    风聆:学习学习(2022-09-13)