激光雷达技术的应用现状及应用前景(2)
激光雷达无论在军用领域还是民用领域日益得到广泛的应用。介绍了激光雷达的工作原理、工作特点及分类,介绍了它们的研究进展和发展现状,以及应用现状和发展前景。
2.3激光雷达在空间交会对接中的应用 交会对接范围为100km—1m,在实际的空间对接中,当距离大于100km时,航天员可以通过机载微博交会雷达和潜望镜获得两个航天器之间的相对位置。随着两航天器的逼近,当相对距离小于100m时,由于硬件的限制,微波雷达不能为最后逼近提供足够精度的测量信息。由于激光本身的波束窄、相干性好、工作频率高等优点,激光雷达能在交会阶段直到对接的整个过程中提供高精度的相对距离、速度、角度和角速度的精确测量,因此它既能用于目前的自动寻的、接近和最后的手动逼近操作过程,又能为未来无人交会对接任务提供自主导航的扩展功能。 激光雷达一般由下列部分组成:激光源、发射与接收光路、信号处理、扫描跟踪机构、目标反射器和检测器等。扫描跟踪机构可完成大角度的光束偏转。这种机构大都由两自由度框架组成,框架上固定了反射镜,使光束偏转。由于偏转对象是光束,所以机构可作得十分精巧、细致。目标反射器安装在目标飞行器上,一般用角反射器 ( 三个相互垂直的反射镜组成 ),从而使目标反射器将雷达天线射出的光束按原方向反射回去。此时目标的位置和姿态信息由激光雷达光学接收天线接收,然后进行检测和数据处理。 激光雷达的测距、测度、和测角原理与微波雷达基本相同。因此用于空间交会对接的激光雷达包含连续波测距器和位置敏感器两个部分。这两个部分通过公用光学装置混合起来。激光雷达 比较可靠和精确的测速方法是测量回波信号的多普勒频移。激光雷达对目标的角跟踪可采用圆锥扫描法和单脉冲法。现在,激光雷达也能用于最后的手动逼近和对接阶段,此时主要用来测量相对姿态。激光测距技术比较成熟,但是激光测量姿态角是一项技术难点。 2.4激光雷达在油气直接勘察中的应用前景 利用遥感直接探测油气上方的烃类气体的异常是一种直接而快捷的油气勘探方法。激光雷达是激光技术和雷达技术相结合的产物,将其应用于油类勘测已经成为可能。激光器的工作波长范围广,单色性好,而且激光是定向辐射,具有准直性,测量灵敏度高等优点,使其在遥感方面远优于其他传感器。 激光雷达由发射系统和接收系统两大部分组成。发射系统主要包括激光器和发射望远镜;接受系统主要由接收望远镜、光电倍增管和显示器三部分组成。激光雷达技术是根据激光光束在大气中传输时,大气中尘埃微粒和各种气体分子对激光产生弥散射,瑞利散射、拉曼散射和共振荧光以及共振吸收等现象,然后利用激光雷达接收系统收集和记录上述现象过程中所产生的背向散射光谱,以达到探测大气成份和浓度的目的。 烃类气体是油气田油气微渗漏的主要指示性气体,而近地表的烃类气体从成分上看,主要是由早期的成岩作用、细菌作用和地下热作用等共同作用的结果。共振吸收激光雷达在探测气体分子含量时一般都采用各种可调谐激光器激光雷达探测气体的探测灵敏度,是指激光雷达所能接收到的激光功率细微变化的能力。探测的距离和被测气体分子的吸收截面是影响探铡灵敏度的主要因素。据研究资料介绍,吸收截面越大灵敏度越高;而探测距离越大,灵敏度越高。而路径与灵敏度之间的关系是路径越长,气体分子对激光光束的吸收衰减也越强烈,从而使探测灵敏度大大提高。但是,由于存在着激光光斑的发散和因大气湍流引起的激光传输方向改变的抖动效应,将使激光的有效利用率减小,即信噪比下降,从而影响污染气体分子含量的探测精度。因此探测距离以数公里为宜。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn