切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 激光雷达技术应用前景展望

    作者:佚名 来源:网络 时间:2017-12-18 18:03 阅读:2590 [投稿]
    机载激光雷达(LiDAR)是一种新型主动式航空传感器,通过集成定姿定位系统(POS)和激光测距仪,能够直接获取观测点的三维地理坐标。

    中国科学院李奇博士发明的机载激光雷达波形数据量化分解方法,可以比激光雷达设备制造商提供数量更多、回波次数更多和精度更高的点云数据。

    全球顶级机载激光雷达硬件厂商RIEGL生产的点云数据与李奇博士发明的高斯分解生产的点云数据进行比较得到表1所示的结果。从表中可以看出高斯分解提取的点云数量要比系统得到的要多,而且回波次数也要多,可以看出波形分解得到点云的层次感要更好。这对植被结构参数的计算,城市建模,地形断线的提取都有很大的好处。


    表1.高斯分解和系统的比较

    李奇博士发明的波形数据高斯分解方法得到的点云数据有更多的层次感,可以很直观地看到哪里的植被比较多,哪里没有植被,即使没有光谱信息也可以做出准确的判断,在这里甚至可以判断植被的密集程度和高矮,这是影像无法做到的。

    这个数据是在一个有植被覆盖的山区采集的,机载激光雷达生产的重要产品之一就是DTM和DSM。系统的脉冲触发计时器在垂直方向上的分辨率大约为2米,表2分析了RIEGL系统和李奇博士的高斯分解方法在最后一次回波上的表现。可见在最大高程上两者基本一致,但高斯分解得到的最小高程要比系统得到的低2.04米,平均高程低0.065米,说明李奇博士的方法在低矮植被处表现更好,使DTM生产的原始数据质量有更好的保证。系统提取的点比高斯分解得到的多是因为有些地物对激光的反射率很小造成波形起伏非常小,基本上由噪音组成,系统会在一个噪音很突出的地方记录一次回波,而高斯分解则认为它是噪音而不记录。系统得到的奇异点比高斯分解要多。


    表2.最后一次回波的比较

    通过表1和表2,我们可以看出李奇博士的方法得到点云数据的质量要比国外激光雷达硬件厂商RIEGL系统得到的要高。此发明让企业数据处理人员对设备采集的数据精度能做到知其然知其所以然,提高数据处理效率,并减少外业实测工作量,实实在在的帮助企业降低成本。

    我们相信随着我国科技的持续进步,我国未来完全有能力引领适合我国国情的产业技术升级。

    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评