激光器和反激光器同时出现在了同一器件中!
能源部劳伦斯伯克利国家实验室(伯克利实验室)的科学家们第一次创造了一个单一的器件,其可以同时起到激光器和反激光器的作用,并且他们在电信频段内演示了这两个相反的功能。
平衡和对称 宇称-时间对称是一个由量子力学演化而来的概念。在一个对称操作中,位置被翻转,就像左手变成右手,或者反过来。 现在增加时间反转操作,这类似于录像带倒带并从后往前观看其动作。例如,气球充气过程的时间反转动作是将同样的气球放气。在光学中,放大增益介质的时间反转对应物是吸收损耗介质。 如果一个系统经过对称和时间反转操作后能够返回到其原来配置,则认为该系统满足宇称-时间对称条件。 在反激光器被发现后不久,科学家们就已经预测,一个具有宇称-时间对称性的系统将可以在同一空间同一频率下同时支持激光器和反激光器。在张和他的研究小组所创造的器件中,增益和损耗的大小,构成单元的尺寸,以及通过的光波长结合在一起构成了宇称-时间对称的条件。 当系统处于平衡状态,增益和损耗相等时,没有对光的净放大或净吸收。但是,如果条件被扰动,导致对称性被打破,那么就可以观察到相干放大和吸收。 在实验中,两个相同强度的光束被导向该器件相反的两端。研究人员发现,通过改变一个光源的相位,他们能够控制光波是在放大材料中还是在吸收材料中花更多的时间。 加快一个光源的相位,会得到一个有利于增益介质或者相干光放大的干涉图案,或者称为激射模式。减缓一个光源的相位则具有相反的效果,会导致在损耗介质中花费更多的时间以及对光束的相干吸收,或着称为反激射模式。 如果这两个波长的相位是相等的,并且它们在同一时间进入该器件,则既不会放大也不会吸收,因为光在每个区域花费了相等的时间。 研究人员将目标波长定在了约1556纳米,其位于光通信所使用的波段内。 “这项工作是第一个展示了严格满足宇称-时间对称条件的平衡增益-损耗示例,导致了同时激射和反激射的实现,”该论文的共同作者Liang Feng说,他以前是Zhang实验室的一名博士后研究员,现在是布法罗大学的电气工程助理教授。“在一个单一的集成器件中成功实现激射和反激射是迈向终极光控制极限的一大步。” Zhang同时还是加州大学伯克利分校国家科学基金纳米科学与工程中心的教授和主任。 这项工作主要由美国能源部科学办公室资助,并利用了分子工厂(Molecular Foundry)——一个位于伯克利实验室内的能源部科学办公室的用户设施。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn