高分子发光材料及器件
PLED是近年来国际上的研究热点,本文介绍高分子发光材料及器件的研究状况,并对近些年来国内外的PLED的产业化发展做了简述。
但由于用于印刷的母版的清洗较为困难,容易在衬底上产生交差的污染,所以可能降低制得的器件的发光性能。 C、喷墨打印 在制备P L E D的印刷技术发展的同时,喷墨打印技术也得到了发展,取得了更为好的效果,并迅速被广泛接受。喷墨打印技术把空穴传输,及可发红、绿、蓝三色高分子材料当“墨水”,通过微米级的打印喷头,喷涂在ITO导电玻璃衬底的子像素坑中,形成三基色发光单元。这种技术可以通过高分子溶液浓度的调节得到均匀的膜层,打印时不用接触衬底材料避免污染,且打印精确减少材料浪费。如果利用多个喷头,这种技术可缩短时间,还可实现规模化生产。 1998年,Yang等人在SID会议上展出了使用喷墨打印技术制备PLED器件, 同年l 1月他们又使用喷墨打印技术成功制备出双色 PLED器件[11]。 1999年Seiko Epson与CDT合作在美SID上展示第一台采用喷墨打印技术制造的PLED全彩显示器,16 灰阶可显4096色,约有30,000画素,达120ppi,采用主动式TFT驱动。此后,喷墨打印技术制备的P L E D器件快速发展,Toshiba、Sharp、Philips、Dupont、Covion、CASIO、OS RAM 光电半导体公司等公司加入这一行业的竞争。现在PLED喷墨打印设备已经可以商业化生产,如日本真空公司( ULVAC) 的子公司Litrex公司、荷兰的Philips公司、美国的MicroFab公司和Spectra公司等。Litrex公司在2005年研发出的第7代打印设备(Gen 7 )有12个喷头,可用于制作2.5 m*2.5 m的大尺寸PLED显示屏[12]。 2003年,Philips公司在荷兰组建了世界上第一条 PLED生产线 。这条生产线采用第二代打印设备,能制备衬底尺寸350 mm *350mm的显示器件,自组装的打印机上装有4个独立的打印头分别用来打印PEDOT/PSS及红绿蓝3种发光材料,每个打印头配25个溶液喷射口,各喷射口喷出的溶液量可控制在10-20pL。 2、高分子发光器件的结构 a、单层 单层聚合物薄膜被夹在ITO阳极和金属阴极之间,形成了最简单的单层PLED。其中聚合物薄膜既作发光,又兼作电子传输层和空穴传输层。1990年英国剑桥大学的Friend研究小组以PPV高分子材料制作的发黄绿色PLED,其结构为 ITO/PPV/Ca,就是单层结构。由于单层器件的载流子注入不平衡,金属电极容易导致电极对发光的淬灭等原因,一般单层结构PLED发光效率都不高。 b、双层 双层结构主要有两种形式,一种是阳极/聚合物发光材料/电子传输层/阴极,一种是阳极/空穴传输层/聚合物发光材料/阴极,主要是引进一个载流子传输层,增加电子或空穴的传输能力,增加其发光效率。1992年剑桥大学的研究人员鉴于单层结构ITO / PPV / Ca之二极管的效率不高,于加入一层butyl-PBD分散于PMMA的高分子层作为电子传输层,其结构为ITO / PPV / PBD-PMMA / Ca,以提升电子的传递,使量子效率由0.05%大幅地提升至0.8%[13]。 Uniax的研究人员1995年发展出结构为ITO/Polyaniline-CSA-PES / MEH-PPV / Li:Al合金的PLED,以掺杂聚苯胺作为空穴传输层,其起始电压仅1.7V,在3V时有超过400cd /㎡的亮度,外部量子效率为2.23%。在ITO与发光层之间加入一层掺杂过的导电性高分子,对于组件的稳定性与使用寿命有很大的助益,此成果Uniax已经申请美国专利[14]。目前,这种ITO /空穴传输层/ /聚合物发光材料/阴极结构逐渐成为PLED器件的主流架构。Bayer公司利用聚噻吩衍生物的PEDOT-PSS系统,取代原先的聚苯胺系统,并已经进一步商品化[15]。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn