切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 利用激光技术提高薄膜太阳能电池制造效率

    作者:佚名 来源:本站整理 时间:2011-12-20 23:49 阅读:2661 [投稿]
    激光器是生产薄膜太阳能电池模块的重要工具,特别是高性能超短脉冲激光器,其能提供持续时间仅几个皮秒的超短脉冲,这不但能帮助制造商提高产量,而且还能优化加工工艺。 目前,在针对解决未来能源问题的讨论中 ..

    激光器是生产薄膜太阳能电池模块的重要工具,特别是高性能超短脉冲激光器,其能提供持续时间仅几个皮秒的超短脉冲,这不但能帮助制造商提高产量,而且还能优化加工工艺。 

    目前,在针对解决未来能源问题的讨论中,光伏能源作为一种可再生能源扮演着重要角色。技术进步是实现电能平价消费的一个至关重要的前提条件,比如通过技术进步将光伏发电的成本降低到接近传统能源的成本。 

    目前,晶硅太阳能电池是光伏市场中的主导产品,其转换效率最高达20%。在晶硅太阳能电池的制造过程中,激光器主要用于晶圆切割和边缘绝缘。 

    在激光边缘绝缘过程中,激光辅助掺杂(doping)工艺用于防止电池正面与背面之间的短路而引起的功率损失。越来越多的激光器被用于激光辅助掺杂工艺中,以改善载流子的迁移率,特别是对于电极的接触指而言尤为如此。在过去的几年中,薄膜太阳能电池取得了巨大的发展,业界专家们更是希望其未来能在光伏市场中占据大约20%的市场份额。 

    薄膜太阳能电池中所采用的膜层只有几微米厚,因此其在生产中便能节约大量材料。在薄膜太阳能电池的制造过程中,激光发挥着决定性的作用。在整个制造过程中,激光将电池结构化并连接成模块,并对模块进行相应的刻蚀处理,进而保证所需要的绝缘性能。 

    成熟的激光刻线工艺 

    在非晶硅或碲化镉(CdTe)薄膜太阳能电池模块的生产过程中,导电薄膜和光伏薄膜被沉积在大面积玻璃基板上。每层薄膜被沉积后,均利用激光对膜层进行刻蚀,并使各个电池之间自动串联起来。这样,就能够根据电池宽度设定电池和模块的电流。精确的选择性非接触式激光加工,能够可靠地集成到薄膜太阳能电池模块的生产线中。人们通常所说的刻线就是单个激光脉冲刻蚀的一个连贯过程,该脉冲聚焦后光斑大小为30~80μm,因此在P1层刻线中,要采用脉宽为几十纳秒(10~80ns)的脉冲光对玻璃基底进行刻蚀。

    透明导电氧化物(TCO,如ZnO和SnO2)通常使用近红外激光和相对较高的脉冲重复频率进行加工。通常需要的脉冲重复频率要超过100kHz。较高的脉冲重复频率能够确保切口处的彻底清洁。 

    根据材料对激光的吸收系数的不同,需要为特定的加工工艺选择合适的激光波长。绿激光对于硅的破坏阈值远低于其对TCO的破坏阈值,因此绿激光可以安全透过TCO膜层后,对吸收层进行刻线。P2层和P3层的刻线机理与P1层相同。 

    单脉冲刻线机理本身的特征对脉冲重复频率提出了一定的限制。为了防止接触面半导体层的脱落,加工过程中需要的典型脉冲重复频率为35~45kHz。常用的刻蚀阈值约为2J/cm2,也就是能将25μJ的激光能量聚焦到直径为40μm的面积上,其平均功率非常低。由于绿光激光器的平均功率均为数瓦量级,因此能够将光束分光后进行多光束并行加工,从而进一步提高工作效率。 

    对于P1、P2和P3层的刻线应用而言,用于微加工应用的、输出波长为1064nm和532nm的结构小巧紧凑的二极管泵浦激光器,无疑是无疑是一种理想的选择,并且这种激光器能够提供极高的脉冲稳定性。这类激光器的脉冲持续时间为8~ 40ns,脉冲重复频率为1~100kHz。 

    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评