切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 光纤激光器最新研究进程

    作者:佚名 来源:本站整理 时间:2011-11-27 22:35 阅读:2317 [投稿]
    对掺杂光纤作为增益介质的光纤激光器的研究始于20世纪60年代,而直到80年代后期,随着光纤制造工艺与半导体激光器生产技术的日趋成熟,以及光通讯技术的迅猛发展,大功率光纤激光器领域的研究才取得实质性突破。
    对掺杂光纤作为增益介质的光纤激光器的研究始于20世纪60年代,而直到80年代后期,随着光纤制造工艺与半导体激光器生产技术的日趋成熟,以及光通讯技术的迅猛发展,大功率光纤激光器领域的研究才取得实质性突破。由于光纤激光器以灵巧的半导体激光二极管作为泵源,以柔软的光纤作为波导和增益介质,同时可采用光纤光栅,耦合器等光纤元件,因此无需光路机械调整,结构紧凑,便于集成,其特有的全光纤结构使器件的抗电磁干扰性强,温度膨胀系数小,在频域上应用WDM及光纤传感技术可实现多波长可调谐输出,在时域上结合激光锁模技术可产生几乎没有啁啾的皮秒级超短变换极限光脉冲。与固体激光器和半导体激光器相比,光纤激光器具有无可比拟的优点。目前光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工、图像显示和生物医疗等更广阔的领域迅速扩展。本文以下内容概述了光纤激光器的基本结构、特点、应用及其发展前景。
    1.光纤激光器结构
      光纤激光器的基本结构与其他激光器基本相同。
      光纤激光器主要由泵源,耦合器,掺稀土元素光纤,谐振腔等部件构成。泵源由一个或多个大功率激光二极管构成,其发出的泵浦光经特殊的泵浦结构耦合入作为增益介质的掺稀土元素光纤,泵浦波长上的光子被掺杂光纤介质吸收,形成粒子数反转,受激发射的光波经谐振腔镜的反馈和振荡形成激光输出。
    1.1掺稀土元素光纤
      光纤激光器是以掺稀土元素光纤作为增益介质的,十五种稀土元素中比较常用的有源光纤掺杂离子有Nd3+, Ho3+, Er3+, Tm3+, Yb3+等,上述几种稀土元素的泵浦波长和激射波长如表所示。
     Nd3+   Yb3+   Er3+   Tm3+   Ho3+
    泵浦波长   795nm  800nm-1000nm  980nm  790nm,1260nm,1650nm  900nm1150nm
    激射波长   1060nm   1340nm   1030nm-1150nm  1550nm  1.9-2μm 2μm
      从表可看出,Yb3+具有较宽的吸收带(800nm-1000nm)和相当宽的激发带(1030nm-1150nm),因此泵源选择非常广泛而且泵浦光和激光都没有受激吸收,以掺Yb3+光纤激光器为泵源的拉曼光纤激光器可行成1.2μm-1.6μm的激光输出。掺Er3+光纤激光器的输出波长对应光通信主要窗口1.5μm,是目前应用最广泛和技术最成熟的光纤激光器。掺Tm3+,掺Ho3+ 光纤激光器的输出波长在2.0μm左右,由于水分子在该波长附近有很强的中红外吸收峰,因此用该波段激光器进行手术时,激光照射部位血液迅速凝结,手术创面小,止血性好,又由于该波段激光对人眼是安全的,所以掺Tm3+,掺Ho3+ 光纤激光器在医疗和生物学研究方面有广泛的应用前景。
    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评