切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 几何光学

    作者:佚名 来源:本站整理 时间:2011-11-24 23:23 阅读:1899 [投稿]
    几何光学是光学学科中以光线为基础,研究光的传播和成像规律的一个重要的实用性分支学科。在几何光学中,把组成物体的物点看作是几何点,把它所发出的光束看作是无数几何光线的集合,光线的方向代表光能的传播方向。 ..
    此外,当用较宽波段的复色光成像时,由于光学媒质的折射率随波长而异,各色光经透镜系统逐面折射时,必会因色散而有不同的传播途径,产生被称为色差的成像缺陷。色差分两种:位置色差和倍率色差。前者导致不同的色光有不同的成像位置,后者导致不同的色光有不同的成像倍率。两者都使像带色而严重影响成像质量,即使在近轴区也不能幸免。
    各种像差的实际值需通过若干条光线的追迹而得知。但是,在稍大于近轴区的范围(称赛德耳区)内,成像缺陷可以用初级像差(也称赛德耳像差)来描述。初级像差值只需通过对二条近轴光线的追迹就能全部计算出来。像差,特别是初级像差已有相当完整的理论,是光学系统设计的理论基础。
    为使光学系统在具有大的孔径和视场时能良好成像,必须对像差作精细校正和平衡,这不是用简单的系统所能实现的。所以,高性能的实际光学系统需要有较复杂的结构形式。
    一个光学系统须满足一系列要求,包括:放大率、物像共轭距、转像和光轴转折等高斯光学要求;孔径和视场等性能要求,以及校正像差和成像质量等方面的要求。这些要求都需要在设计时予以考虑和满足。因此,光学系统设计工作应包括:对光学系统进行整体安排,并计算和确定系统或系统的各个组成部分的有关高斯光学参量和性能参量;选取或确定系统或系统各组成部分的结构形式并计算其初始结构参量;校正和平衡像差;评价像质。
    像差与光学系统结构参量(如透镜厚度、透镜表面曲率半径等)之间的关系极其复杂,不可能以具体的函数式表达出来,因而无法采用解方程之类的办法直接由像差要求计算出系统的精确结构参量。现在能做到的是求得满足初级像差要求的解。
    初级像差是实际像差的近似表示,仅在孔径和视场较小时能反映实际的像差情况,因此,按初级像差要求求得的解只是初始的结构参量,需对其进行修改才能达到像差的进一步校正和平衡,在这一过程中,传统的做法是根据追迹光线得到的像差数据及其在系统各面上的分布情况,进行分析、判断,找出对像差影响大的参量,加以修改,然后再追迹光线求出新的像差数据加以讦价。如此反复修改,直到把应该考虑的各种像差都校正和平衡到符合要求为止。这是一个极其繁复和费时很多的过程。
    电子计算机的问世和应用,给光学设计工作以很大的促进。光学自动设计能根据系统各个结构参量对像差的影响,同时修改对像差有校正作用的所有参量,使各种像差同时减小,因此能充分发挥各个结构参量对像差的校正作用,不仅加快了设计速度,也提高了设计质量。
    在光学自动设计中,需构造一个既便于计算机作判断又能反映所设计系统像质优劣的评价函数,以引导计算机对结构参量的修改。通常,用加权像差的二次方之和构成评价函数,它是系统结构参量的函数。每修改一次结构参数(称为一次迭代)都会引起评价函数值的变化,如果有所降低,就表示像差有所减小,像质有所提高。
    结构参量的改变要有一定的约束,以保证有关边界条件得到满足。所以,所谓光学自动设计,就是在满足边界条件的前提下,经过若干次迭代,由计算机自动找出一组结构参量,使其评价函数为极小值。现在用于光学自动设计的数学方法很多,较为有效、已为大家所采用的有阻尼最小二乘法,标准正交化法和适应法等。
    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评