光纤技术的发展及其应用
随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、激光喇曼光放大器(SRA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展 ..
ITU-T将“全波光纤”定义为G.652c类光纤,丰要适用于ITUT的G.957规定的SDH传输系统和G.691规定的带光放大的单通道SDH传输系统。全波光纤在城域网建设中将会大有作为,从网络运营商的角度来考虑,有了全波光纤,就可以采用粗波分复用技术,取其信道间隔为20nm左右,这时仍可为网络提供较大的带宽,而与此同时,对滤波器和激光器性能要求却大为降低,这就大大降低了网络运营商的建设成本。全波光纤的出现使多种光通信业务有了更大的灵活性,由于有很宽的波带可供通信用,我们就可将全波光纤的波带划分成不同通信业务段而分别使用。可以预见,未来中小城市城域网的建设,将会大量采用这种全波光纤。 人类追求高速、宽带通信网络的欲望是永无止境的,在目前带宽需求成指数增长的情况下,全波光纤正越来越受到业界的关注,它的诸多优点已被通信业界广泛接受。 4.聚合物光纤 目前通信的主干线已实现了以石英光纤为基质的通信,但是,在接入刚和光纤人户(FTTH)工程中,石英光纤却遇到了较大的困难。由于石英光纤的纤芯很细(6~10nm),光纤的耦合和互按都面临技术困难,因为需要高精度的对准技术,因此对于距离短、接点多的接入网用户是一个难题。而聚合物光纤(POF,Polymer Optical Fiber)由于其芯径大(0.2~1.5nm),故可以使用廉价而又简单的注塑连接器,并且其韧性和可挠性均较好,数值孔径大,可以使用廉价的激光源,在可见光区有低损耗的窗口。 聚合物光纤分为多模阶跃型SI POF和多模渐变型G1、POF两大类,由于SI POF存在严重的模式色散,传输带宽与对绞铜线相似,限制在5MHz以内,即便在很短的通信距离内也不能满足FDDl、SDH、B-ISDN的通信标准要求,而Gl、POF纤芯的折射率分布呈抛物线,模式色散大大降低,信号传输的带宽在100m内可达2.5Gbit/s以上。因此,聚合物光纤是目前FTTH工程中最有希望的传输介质,有可能成为接入网,局域网等的理想传输介质。 5.光予晶体光纤 对石英光纤来说,光子晶体光纤(PCF,Photonic Crystal Fiber)的结构特点是在其中间沿轴向均匀排列空气孔,这样从光纤端面看,就存在一个二维周期性的结构,如果其中一个孔遭到破坏和缺失,则会出现缺陷,利用这个缺陷,光就能够在其中传播。PCF与普通单模光纤不同,由于它是由周期性排列空气孔的单一石英材料构成,所以有中空光纤或微结构光纤之称。PCF具有特殊的色散和非线性特性,在光通信领域将会有广泛的应用。 PCF引人注目的一个特点是,结构合理,具备在所有波长上都支持单模传输的能力,即所谓的“无休止单模”特性,这个特性已经有了很好的理论解释。这需要满足空气孔足够小的条件,空气孔径与孔间距之比必须不大干0.2。空气孔较大的PCF将会与普通光纤一样,在短波长区会出现多模现象。 PCF的另一个特点是它具有奇异的色散特性。现在人们已经在PCF中成功产生了850nm光孤子,预计将来波长还可以降低。PCF在未来超宽WDM(波分复用技术)的平坦色散补偿中可能扮演重要角色。 6.结束语 光纤技术的不断进步,给光通信也带来了飞速的发展。但目前,光纤在光通信应用中还有许多问题有待解决。如色散与弥散、有限色散和小色散斜率、负色散、偏振模色散、非线性、大芯区有效面积弯曲损耗、综合优化面临的矛盾、有效面积与色散斜率、负色散与损耗等。鉴于科学技术的不断进步和生产工艺的不断提高,这些问题都会找到合适的解决办法。 |
【温馨提示】本频道长期接受投稿,内容可以是:
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
文章点评