中科院光电所突破下一代太阳自适应光学技术

发布:cyqdesign 2017-11-01 21:44 阅读:1632
近日,中国科学院光电技术研究所研究员饶长辉带领的太阳高分辨力光学成像研究小组,突破下一代自适应光学——多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)关键技术,利用所研制的太阳MCAO系统原理样机与云南天文台1米新真空太阳望远镜对接,实现对太阳活动区的大视场闭环校正成像观测,在国内首次利用MCAO技术获取到太阳活动区大视场高分辨力实时图像。该试验的成功,标志着我国在下一代自适应光学技术领域取得突破,使我国成为继美国和德国之后,第三个掌握太阳MCAO技术的国家。 #U@| J}a  
?D=8{!R3  
  太阳爆发性活动对地球及行星际空间环境影响较大,对太阳活动准确预警预报可以最大程度地避免灾害性空间天气对人类正常活动的影响,确保航天工程安全。为了研究太阳活动的动力学起源,实现准确的空间环境监测和空间天气预报,需要获得太阳活动区的大视场高分辨力的观测数据。 W4vBf^eC  
aQ|hi F}  
  配备自适应光学系统的地基大口径太阳望远镜是开展高分辨力太阳观测的主要手段。传统自适应光学系统受到大气非等晕性的限制,无法直接满足对整个太阳活动区(典型尺度在1′~ 2′视场)进行高分辨力观测的需求。为解决传统自适应光学校正视场小的问题,科学家发展出了MCAO技术,该技术在近年来得到长足发展。 ps+:</;Z  
#T"64%dX  
  MCAO技术通过对地球大气湍流引起的波前像差进行分层探测和校正,实现三维立体补偿,从而在大视场范围内消除大气湍流的影响,获得接近衍射极限的成像效果。相比于另一种大视场自适应光学技术概念——地表层自适应光学技术(Ground Layer Adaptive Optics, GLAO),MCAO技术除校正地表层湍流波前像差外,还对高层大气进行补偿,具有大视场衍射极限的成像能力,而GLAO只针对地表层湍流引起的波前像差进行探测和校正,可以在大视场范围内有效改善大气视宁度的影响,但成像分辨力远达不到望远镜的衍射极限。 plXG[1;&G  
!01i%W'  
  根据饶长辉团队近日对太阳活动区NOAA12683的高分辨力观测结果,与开环数据和GLAO系统闭环数据的对比表明,MCAO校正后能够获得太阳活动区更高分辨力的成像观测结果。 euZ I`*0  
ML= z<u+  
  作为观测学科,天文技术的突破和新一代天文学仪器的研制直接驱动天文学的发展,进而拓展人类的认知范围。多层共轭自适应光学技术的发展和运用,将帮助太阳物理学家看到更清晰、更精细、更动态化的太阳活动,加深人类对恒星乃至宇宙的认识,也将为太阳物理研究和空间天气预报提供强有力的数据支撑。 d?7BxYaa  
5;Ia$lm=y  
  研究工作获得2017年度国家自然科学基金重大科研仪器项目的支持。饶长辉团队将在5年内为云南天文台1米新真空太阳望远镜配备一套专用的MCAO系统,从而实现该技术的成功运用。 5f_7&NxT  
%U?)?iZdL  
oAz<G  
  饶长辉团队观测的太阳活动区NOAA 12683的开环、GLAO闭环以及MCAO闭环图像(成像波段及带宽:7057@6Å)
关键词: 自适应光学
分享到:

最新评论

我要发表 我要评论
限 50000 字节
关于我们
网站介绍
免责声明
加入我们
赞助我们
服务项目
稿件投递
广告投放
人才招聘
团购天下
帮助中心
新手入门
发帖回帖
充值VIP
其它功能
站内工具
清除Cookies
无图版
手机浏览
网站统计
交流方式
联系邮箱:商务合作 站务处理
微信公众号:opticsky 微信号:cyqdesign
新浪微博:光行天下OPTICSKY
QQ号:9652202
主办方:成都光行天下科技有限公司
Copyright © 2005-2024 光行天下 蜀ICP备06003254号-1