引言 ;k,#o!>
M#SGZ~=1r
长期以来,成形工艺和模具的设计以及工艺过程分析主要的依据是积累的实际经验、行业标准和传统理论。但由于实际经验的非确定性、行业标准的实效性,以及传统理论对变形条件和变形过程进行了简化,因此,对复杂的模具设计往往不容易获得满意的结果,使得调试模具的时间长,次数多,甚至导致模具的报废。通常情况下,为了保证工艺和模具的可靠与安全,多采用保守的设计方案,造成工序的增多,模具结构尺寸的加大。现代成形加工与模具正朝着高效率、高速度、高精度、高性能、低成本、节省资源等方向发展,因此传统的设计方式已远远无法满足要求。计算机技术的出现和发展以及工程实践中对数值分析要求的日益增长,发展起来了有限元的分析方法。有限元自1960年CLOUGH 首次提出后,获得了迅速的发展。下面我们共同讨论有限元数值模拟分析技术。 9XN/ wp
\U HI%1^
1 、有限元数值模拟分析技术 m Wh
vu_ u\2d
塑性成形的工艺设计和模具设计一直采用传统的凭经验、实验方法。这种设计方法难以满足制造工艺的要求。随着计算机技术的飞速发展和70年代塑性有限元理论的发展,许多塑性成形过程中很难求解的问题可以用有限元方法求解。 Yj*!t1qm
TsI%M
有限元数值模拟技术用于检验工艺和模具设计的合理性已经在冷锻成形工艺领域得到了足够体现。通过建模和合适的边界条件的确定,有限元数值模拟技术可以很直观地得到金属流动过程的应力、应变、模具受力、模具失效情况及锻件可能出现的缺陷情况。这些重要信息的获得对合理的模具结构,模具的选材、热处理及成形工艺方案的最终确定有着重要的指导意义。 p9*Ak
U&]
*<