程序如下: 5P\N"Yjx'
% By Ruibin 08-9-25 Mo|yv[(K,
% Instruction:This program help design LED collimating lens , feedback aspheric parameters and several chief dimensions. 3]S`|#J
BTs0o&}e
clear all;clc b;{h?xc6
okDJ(AIV+
% The Frist Step: Define independent parameters JN^bo(kb
r=3.25; %选择开孔半径 _80ns&q
R=4.25; %定义曲面底部半径 9HKf^+';n
d=1; %设置透镜前方平板高度 hho%~^bn(
n=1.4935; %定义材料折射率 ,i![QXZ
dividing_angle=24; %定义Core与TIR的分界角 =c]a
{|W?
min_angle=1; %设置计算精度 ?pKN'`
N=4; %设定拟合非球面系数阶数 )[
b#g(Y(
<(uTst
% The Second Step:Caculate induced variable s!`H
angles_Core=(dividing_angle:-min_angle:0);angles_TIR=(90:-min_angle:dividing_angle); E0jUewG
num_Core=length(angles_Core);num_TIR=length(angles_TIR); "G kI5!
for i=1:(num_Core) |D(&w+(
a_Core(i)=(angles_Core(i)*pi/180); "OJr*B
k1(i)=cot(a_Core(i)); AA.Ys89V
k2(i)=(-k1(i)+(n^2*k1(i)^2+n^2)^(1/2))/(n^2*k1(i)^2-k1(i)^2+n^2); ^Fvr
f`A'
end U#"WrWj
k1(num_Core)=999;k2(num_Core)=0; /&QQ p3
for i=1:num_TIR C2.W[T
a_TIR(i)=(angles_TIR(i)*pi/180); fp-m.d:|
k3(i)=tan((pi/2+asin(cos(a_TIR(i))/n))/2); 5%'S
k4(i)=tan(asin(cos(a_TIR(i))/n)); $owb3g(%4
end xH@'H?
X0_TIR=R;X0_Core=r;Y0_TIR=0;Y0_Core=r*cot(a_Core(1)); qAORWc
L6 kZ2-6
% The Third Step:Solve functions ;%!tf{Si
for i=1:num_Core %Solve the curve of Core %t{Sb4XZ4k
syms x; ?q6Z's[
f1=k1(i)*x; -;<>tq'3`
f2=k2(i)*(x-X0_Core)+Y0_Core; kU(kU2u%9
f=f1-f2; 8.-S$^hj~6
x=double(solve(f));y=k1(i)*x; >\&= [C
X0_Core=x;Y0_Core=y; ex=)H%_|
Px_Core(i)=X0_Core;Py_Core(i)=Y0_Core; soxfk+
9
end pMDH
for i=1:num_TIR %Solve the curve of TIR e
SK((T
syms x; bkkSIl+Q
f1=k3(i)*(x-X0_TIR)+Y0_TIR; pd7O`.3
f2=k4(i)*(x-r)+r*cot(a_TIR(i)); bZK+9IR
f=f1-f2; K7S754m
x=double(solve(f));y=k3(i)*(x-X0_TIR)+Y0_TIR; qkiJH T
X0_TIR=x;Y0_TIR=y; *f?S5.
Px_TIR(i)=X0_TIR;Py_TIR(i)=Y0_TIR; [xWEf#', !
end S_j1=6#^
b.@H1L
% The furth Step:Fitting the curve e6o/q)9#
P_Core=polyfit(Px_Core,Py_Core,4); L1rAT
P_TIR=polyfit(Px_TIR,Py_TIR,4); InP[yFV-z
U(P:J e
% The fifth Step:Feedback chief dimensions of the lens and Create it Dl&PL
%Feedback dimensions of the whole lens +R9%~Z.=
result='透镜尺寸如下:' &b!vWX1N
Diameter_of_lens=2*Px_TIR(num_TIR) U-1VnX9m
Thickness_of_lens=Py_TIR(num_TIR)+d f@h2;An$w
Diameter_of_Core=2*r 9n-T5WP
Thickness_of_front_pannel=d t(wZiK}
Bottom_thickness=R-r f>O54T .L.
Lowest_Core=P_Core(5) @|E;}:?u
t[/\KG8
%Feedback dimensions of Lens part TIR ,RR;VKj
result='TIR系数如下:' F68},N>vr@
Thickness=Py_TIR(num_TIR)-P_TIR(5)+d :ao^/&HZ
Aperture=Px_TIR(num_TIR) J-b~4
Obstruction=r G 2!}R
Position=P_TIR(5) avmcGyL
format short e; \)p4okpR
Aspheric=[P_TIR(4) P_TIR(3) P_TIR(2) P_TIR(1)] ~d&'Lp[3
format short; PIgGXNo
@Jkui
%DDE Connection ,eyp$^ 2
TP_COMMAND = ddeinit('TracePro','Scheme'); 8?A@/
%Create TIR ^dheJ]n=k
cmd =['(define TIR (insert:lens-element "PLASTIC" "pmma" (list 0 0 7.0306e-002 1.2580e-001 -2.5732e-003 -2.5281e-006) 18.6774 (list 0 0)(list "cir" 13.6051 0 0 0)(list "cir" 3.25 0 0 0)))']; sE^ns\&QP=
ddeexec(TP_COMMAND,cmd); -|6V}wHg~
cmd =['(entity:move TIR 0 0 -2.3712)']; /L)?> tg
ddeexec(TP_COMMAND,cmd); !?S5IGLOj
cmd =['(property:apply-name TIR "TIR")']; ! Zno[R
ddeexec(TP_COMMAND,cmd); -hQ96S8
BvSdp6z9Iv
%Feedback dimensions of Lens part TIR b=V)?"e-
result='Core系数如下:' jkZ_c!
Thickness=Py_TIR(num_TIR)-P_Core(5)+d W]} #\\$z
Aperture=r qw6EP C
Obstruction='None' 2;dM:FHLhO
Position=P_Core(5) "9)1K!tH
format short e; [t {vYo
Aspheric=[P_Core(4) P_Core(3) P_Core(2) P_Core(1)] <GSQ2bX[
format short; #"=%b
e3
%Create Core @QvfN>T
cmd =['(define Core (insert:lens-element "PLASTIC" "pmma" (list 0 0 -2.6211e-002 1.9124e-001 -1.7949e-002 2.8016e-004) 10.3569 (list 0 0)(list "cir" 3.2500 0 0 0)))']; &uv>'S#%
ddeexec(TP_COMMAND,cmd); czXI?]gg,
cmd =['(entity:move Core 0 0 5.9493)']; zNNzsT8na
ddeexec(TP_COMMAND,cmd); b$;HI7)/K
cmd =['(property:apply-name Core "Core")']; (PRaiE
ddeexec(TP_COMMAND,cmd); 9` OG
sx<}
tbG
%Create Lens cjCE3V9X
cmd =['(define Unite (bool:unite TIR Core))']; Kh>?!`lL
ddeexec(TP_COMMAND,cmd); Vww@eK%5Q
cmd =['(define block (insert:block 100 100 100))']; _K
4eD.
ddeexec(TP_COMMAND,cmd); 516VQ<