切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15228阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 );z/ @Q  
    LCpS}L;  
    wAF#N1-k  
    >RmL0d#B  
    然后添加了默认公差分析,基本没变 P<xCg  
    g>f_'7F&  
    Mg^3Y'{o  
    -v WX L  
    然后运行分析的结果如下: +u7nx  
    8bEii1EM  
    Analysis of Tolerances DVyxe}  
    z"@UNypc,  
    File : E:\光学设计资料\zemax练习\f500.ZMX dy0xz5N-  
    Title: ];}7 %3  
    Date : TUE JUN 21 2011 ud,_^Ul  
    :+S~N)0j^  
    Units are Millimeters. '%A*Z,f  
    All changes are computed using linear differences. UazUr=| e  
    [E%Ov0OC  
    Paraxial Focus compensation only. v/7iu*u  
    7;:Uv=  
    WARNING: Solves should be removed prior to tolerancing. KA0_uty/T  
    a s?)6  
    Mnemonics: DKf:0E8  
    TFRN: Tolerance on curvature in fringes. %MUwd@,  
    TTHI: Tolerance on thickness. -u 'BK@;  
    TSDX: Tolerance on surface decentering in x. *e-+~/9~  
    TSDY: Tolerance on surface decentering in y. > 1&_-  
    TSTX: Tolerance on surface tilt in x (degrees). UzmD2A sO"  
    TSTY: Tolerance on surface tilt in y (degrees). . !;K5U  
    TIRR: Tolerance on irregularity (fringes). Bso3Z ^X.  
    TIND: Tolerance on Nd index of refraction. ghqq%g  
    TEDX: Tolerance on element decentering in x. tqe8:\1yK  
    TEDY: Tolerance on element decentering in y. 41`&/9:"_M  
    TETX: Tolerance on element tilt in x (degrees). "@)9$-g  
    TETY: Tolerance on element tilt in y (degrees). u~^d5["T  
    /F6=iHK(l  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. onAC;<w  
    @5\ns-%  
    WARNING: Boundary constraints on compensators will be ignored. U ORoj )$I  
    pO_L,~<  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm g>O O '}lF  
    Mode                : Sensitivities P ".[=h  
    Sampling            : 2 ~<#!yRy>r  
    Nominal Criterion   : 0.54403234 RZ&T\;m,7  
    Test Wavelength     : 0.6328 $]yHk  
    |cE 69UFB  
    -F|C6m!  
    Fields: XY Symmetric Angle in degrees kMLWF  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY %7~~*_G  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 H|0GRjC  
    m0 k~8^L@f  
    Sensitivity Analysis: &*#- %<=1  
    tZ ]/?+1G  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| #2023Zo]  
    Type                      Value      Criterion        Change          Value      Criterion        Change sh%snLw  
    Fringe tolerance on surface 1 gf8DhiB  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 $NtbI:e{  
    Change in Focus                :      -0.000000                            0.000000 Xr@]7: ,  
    Fringe tolerance on surface 2 2= 6}! Y  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 5L}qL?S`x|  
    Change in Focus                :       0.000000                            0.000000 .:b|imgiv  
    Fringe tolerance on surface 3 *h>KeIB;  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 X_eh+>D  
    Change in Focus                :      -0.000000                            0.000000 4j'cXxo  
    Thickness tolerance on surface 1 MZX-<p+  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 (ft8,^=4  
    Change in Focus                :       0.000000                            0.000000 czV][\5  
    Thickness tolerance on surface 2 26,!HmtC  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 QM }TPE  
    Change in Focus                :       0.000000                           -0.000000 6:(*u{  
    Decenter X tolerance on surfaces 1 through 3 +JMB98+l  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Wm/0Y'$r&k  
    Change in Focus                :       0.000000                            0.000000 q >|:mXR  
    Decenter Y tolerance on surfaces 1 through 3 zMkjdjb  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;U=RV&  
    Change in Focus                :       0.000000                            0.000000 #q"^6C 5  
    Tilt X tolerance on surfaces 1 through 3 (degrees) (gv1f  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 f@%H"8w!  
    Change in Focus                :       0.000000                            0.000000 %!G]H   
    Tilt Y tolerance on surfaces 1 through 3 (degrees) a;Q.R  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 :i&ZMH,O  
    Change in Focus                :       0.000000                            0.000000 EVW{!\8[  
    Decenter X tolerance on surface 1 D,rF?t>=S  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ZV`D} CQ  
    Change in Focus                :       0.000000                            0.000000 e.<$G'  
    Decenter Y tolerance on surface 1 v^a. b  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 8T:|~%Sw  
    Change in Focus                :       0.000000                            0.000000 \/J7U|@Lt  
    Tilt X tolerance on surface (degrees) 1 v:MJF*/  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 $Q[a^V~:  
    Change in Focus                :       0.000000                            0.000000 9~^%v zM  
    Tilt Y tolerance on surface (degrees) 1 1Y"[Qs]"mU  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Y7yh0r_  
    Change in Focus                :       0.000000                            0.000000 Qo !/]\  
    Decenter X tolerance on surface 2 AS34yM(h  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ;hz"`{(JY  
    Change in Focus                :       0.000000                            0.000000 R$<LEwjSw  
    Decenter Y tolerance on surface 2 I@l' Fx  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 xHv<pza:  
    Change in Focus                :       0.000000                            0.000000 >;N0( xB  
    Tilt X tolerance on surface (degrees) 2 e5bRi0  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 *<yKT$(+_  
    Change in Focus                :       0.000000                            0.000000 T [ `t?,  
    Tilt Y tolerance on surface (degrees) 2 5G@z l  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ]>NP?S )R  
    Change in Focus                :       0.000000                            0.000000 \$o!M1j  
    Decenter X tolerance on surface 3 ]o <'T.x  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 :" 9 :J  
    Change in Focus                :       0.000000                            0.000000 @;iW)a_M  
    Decenter Y tolerance on surface 3 Y|t]bb  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qNP&f 8fH  
    Change in Focus                :       0.000000                            0.000000 +1j@n.)ft  
    Tilt X tolerance on surface (degrees) 3 aHosu=NK  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 v,N*vqWS  
    Change in Focus                :       0.000000                            0.000000 1us-ootsjP  
    Tilt Y tolerance on surface (degrees) 3 c}a.  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 J G xuB*}  
    Change in Focus                :       0.000000                            0.000000 #>+O=YO  
    Irregularity of surface 1 in fringes Np4';H  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 eeX^zaKl]  
    Change in Focus                :       0.000000                            0.000000 <KF|QE  
    Irregularity of surface 2 in fringes `+[e]dH  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 yUF<qB  
    Change in Focus                :       0.000000                            0.000000 CQf!<  
    Irregularity of surface 3 in fringes 9NTBdo%u  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 3fJ GJW!zu  
    Change in Focus                :       0.000000                            0.000000 d'~ kf#  
    Index tolerance on surface 1 c:0nOP  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 5;wA7@  
    Change in Focus                :       0.000000                            0.000000 +H5= zf2  
    Index tolerance on surface 2 1b:3'E.#w  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 -POV#1s  
    Change in Focus                :       0.000000                           -0.000000 \2(Uqf#_  
    A`Vz5WB  
    Worst offenders: vd Fy}#X  
    Type                      Value      Criterion        Change R}MdBE  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 .4c*  _$  
    TSTY   2             0.20000000     0.35349910    -0.19053324 R[Q`2ggG  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 aqq7u5O1r  
    TSTX   2             0.20000000     0.35349910    -0.19053324 R=g~od[N_  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ~1&%,$fZ  
    TSTY   1             0.20000000     0.42678383    -0.11724851 1Zc1CUMG  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 J<h^V+x  
    TSTX   1             0.20000000     0.42678383    -0.11724851 6 /^$SWd2  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 P;o6rQf  
    TSTY   3             0.20000000     0.42861670    -0.11541563 SoZ$1$o2  
    |QwX  
    Estimated Performance Changes based upon Root-Sum-Square method: Z?k4Kb  
    Nominal MTF                 :     0.54403234 J%d\ 7  
    Estimated change            :    -0.36299231 tu}AJ  
    Estimated MTF               :     0.18104003 C$o#zu q -  
    (uV ~1  
    Compensator Statistics: 8Fy$'Zx'  
    Change in back focus: 5$o]D  
    Minimum            :        -0.000000 QAYhAOS|e  
    Maximum            :         0.000000 BgLW!|T[  
    Mean               :        -0.000000 '\qd{mM\r  
    Standard Deviation :         0.000000 M>hHTa?W  
    NF`WA-W8@  
    Monte Carlo Analysis: %N 8/g]`7  
    Number of trials: 20 Fm(~Vt;%u  
    f\O)+Vc  
    Initial Statistics: Normal Distribution Kbjt  CI7  
    <}S1ZEZcQ  
      Trial       Criterion        Change J(+I`  
          1     0.42804416    -0.11598818 jE!<]   
    Change in Focus                :      -0.400171 @+LkGrDP  
          2     0.54384387    -0.00018847 OYKeu(=L  
    Change in Focus                :       1.018470 23XSQHVx  
          3     0.44510003    -0.09893230 E6(OEC%,  
    Change in Focus                :      -0.601922 Afm GA9  
          4     0.18154684    -0.36248550 "L^Klk?Vn  
    Change in Focus                :       0.920681 :7&#ej6  
          5     0.28665820    -0.25737414 "Sp+Q&2U  
    Change in Focus                :       1.253875 '`g#Zo  
          6     0.21263372    -0.33139862 R*~<?}Rr  
    Change in Focus                :      -0.903878 j)IXe 0dMC  
          7     0.40051424    -0.14351809 4:\1S~WW  
    Change in Focus                :      -1.354815 G0p|44_~t  
          8     0.48754161    -0.05649072 z(]14250  
    Change in Focus                :       0.215922 L'k )  
          9     0.40357468    -0.14045766 Dohq@+] O  
    Change in Focus                :       0.281783 t}LV[bj1u  
         10     0.26315315    -0.28087919 s'\PU1{  
    Change in Focus                :      -1.048393 *B"p:F7J|  
         11     0.26120585    -0.28282649 v;.7-9c*  
    Change in Focus                :       1.017611 s)Bl1\Q  
         12     0.24033815    -0.30369419 jt|e?1:vF  
    Change in Focus                :      -0.109292 EVc Ees  
         13     0.37164046    -0.17239188 gf/$M[H!   
    Change in Focus                :      -0.692430 /mLOh2 T  
         14     0.48597489    -0.05805744 Xq`|'6]/  
    Change in Focus                :      -0.662040 vZj:\geV  
         15     0.21462327    -0.32940907 7{HJjH!zx  
    Change in Focus                :       1.611296 FHpS?htRy  
         16     0.43378226    -0.11025008 j'Ry.8}  
    Change in Focus                :      -0.640081 ceN*wkGyB  
         17     0.39321881    -0.15081353 S;#S3?G  
    Change in Focus                :       0.914906 hES_JbX}]  
         18     0.20692530    -0.33710703 7PG&G5  
    Change in Focus                :       0.801607 {@K>oaZ  
         19     0.51374068    -0.03029165 }3sj{:z{  
    Change in Focus                :       0.947293 @]r,cPx0Y  
         20     0.38013374    -0.16389860 X`kTbIZ|  
    Change in Focus                :       0.667010 %00KOM:  
    "~~Js~  
    Number of traceable Monte Carlo files generated: 20 5Ug.J{d  
    {+~}iF<%  
    Nominal     0.54403234 O>]I!n`!!A  
    Best        0.54384387    Trial     2 LQ T^1|nq  
    Worst       0.18154684    Trial     4 po@=$HK  
    Mean        0.35770970 N"d M+  
    Std Dev     0.11156454 ]AoRK=aH  
     ;0G+>&C8  
    W]E6<y'  
    Compensator Statistics: jd<`W  
    Change in back focus: Le#>uWM  
    Minimum            :        -1.354815 ^ NZq1c  
    Maximum            :         1.611296 KQ0Zy  
    Mean               :         0.161872 kSJWXNC  
    Standard Deviation :         0.869664 ? <b>2j  
    /NvHM$5O%  
    90% >       0.20977951               LWG%]m|C  
    80% >       0.22748071               AlP}H~|M7  
    50% >       0.38667627               eUP.:(E  
    20% >       0.46553746               9[yW&t;#  
    10% >       0.50064115                Zpfsh2`  
    -4du`dg  
    End of Run. TEQs\d  
    V$U#'G>m  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 #R2wt7vE  
    cXM4+pa=%  
    $['_m~ 2  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 wrw4Uxq  
    hSQ*_#  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 /6Bm <k%  
    80% >       0.22748071                 Mk-zeq<2z  
    50% >       0.38667627                 L_@P fI  
    20% >       0.46553746                 ^l;N;5L  
    10% >       0.50064115 4i]h0_]  
    r Uau? ?  
    最后这个数值是MTF值呢,还是MTF的公差? &YiUhK  
    ' ozu4y  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Hl"^E*9x  
    QOT|6)Yb  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : BJP^?FUd=,  
    90% >       0.20977951                 (.~,I+Cz'  
    80% >       0.22748071                 LZ4Z]!V  
    50% >       0.38667627                 Uqd2{fji=#  
    20% >       0.46553746                 {fxytiH8  
    10% >       0.50064115 '>Uip+'  
    ....... [P3 Z"&  
    )Im3';qt  
    F7&Oc)f"B  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   &\5%C\0Z<  
    Mode                : Sensitivities ;@/vKA3l.  
    Sampling            : 2 t}fU 2Yb  
    Nominal Criterion   : 0.54403234 f}:W1&LhI?  
    Test Wavelength     : 0.6328 iUOGuiP  
    KY9&Ky+2B  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? "a]Ff&T-  
    VN >X/  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试