视觉系统光学性能的4项最基本参数是视野(field of view)、分辨率(resolution)、工作距离(working distance)和景深(depth of field)(见图)。需要考虑的更高级的集成规格参数包括焦距(f)、maximum chip format、失真(distortion)、变焦/聚焦特点(zoom/focus)、design conjugate、聚焦远心(telecentricity)。 yA[({2%
,1/}^f6
机器视觉系统的基本光学参数包括视野、工作距离、分辨率和景深。放大倍数不是基本参数。 .C]cK%OO
N
M|io4+sy
四大参数 :"o
o>
@uH#qg7
1. 视野 W9zE{)Sc~
c6Q(Ygc
简单而言,视野应该是你需要检查的物体的尺寸。很多从事机器视觉系统规格的工程师是从放大倍数的角度来思考的。然而,放大倍数是一种相对规格,依赖于图像传感器的尺寸和显示器件的尺寸。从视野或分辨率的角度来说,它没有真正意义。例如,一种具备 50 倍放大倍数的系统可能具有 5.3 毫米的视野(假如该系统使用的是 1/2 英寸 CCD 和 13 英寸显示器)或 15.2 毫米的视野(1 英寸 CCD、19 英寸显示器)。你必须规定视野,以确保视觉系统能够检验你感兴趣的整个区域。 OJb*VtZz5R
+{53a_q
2.分辨率 #2xSyOrmf
VzlDHpG
只有规定视野而不是规定放大倍数,才能确保系统将具有合适的分辨率。分辨率是系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。系统的分辨率是由光学器件的调制传递函数(modulation transfer function, MTF)、摄像机、电缆和显示硬件等多个参数决定的。MTF 限定了部件在分辨率和对比度方面的总体成像性能。 OVk~N)
Vga-@
光学器件的 MTF 常常被忽略,而仅仅根据基本放大倍数和摄像机像素数量来计算系统的分辨率是。这种近似计算假定光学器件是完美的,往往导致镜头规格偏低,并使系统性能降低。如果了解镜头把来自物体的数据传递到摄像机芯片的精确度,集成商就可以使系统的视野达到最大,同时为手头的工作维持适当的分辨率。 7L:7/
R \s!*)
3.工作距离 [t0rfl{.
?nKF6f
有时,各种机械限制支配光学限制。工作距离是从镜头前部到受检验物体的距离。需要的工作距离越长,保持小视野的难度和成本就越高。通常,人们会出于需要而规定小视野,同时出于方便而规定相当长的工作距离。然而,这种配置会极大地增加成本,往往会降低分辨率,并削弱光学器件的采光能力,从而不必要地降低了系统的总体成像性能。当存在机械限制时(比如在真空箱内部获取某反应的图像),这种配置也许是必要的。不过,假如长工作距离不是必需的,那就不要把事情搞得过于复杂。 0F;,O3Q
YW;
Hk1
4.景深 'PWQnt_U
;\%sEcpT
假如成像的物体是三维的,那么你还必须考虑景深。镜头的景深是物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力。大的景深能够简化各种安装限制,这是因为不需要进行精确的移动来使物体定位于镜头的额定工作距离。不过要记住,虽然镜头会在规定的景深上保持最小分辨率,但它们不一定会在该景深上保持相同视野。放大倍数的这种变化可能对机器视觉测量应用造成灾难性后果。远心镜头可以把该问题减小到最低程度。 o{-<L
hF&}lPVtv
四大参数已经定义机器视觉系统的性能,选择和优化另外六个参数,可以减少设备的设置费用、系统的故障时间,并优化设备的可靠性和可重复性。