随着电子产品结构尺寸越来越小,目前出现了两个特别引人注目的问题︰一是可接触的电路节点越来越少;二是像在线测试( In-Circuit-Test )这些方法的应用受到限制。为了解决这些问题,可以在电路布局上采取相应的措施,采用新的测试方法和采用创新性适配器解决方案。 r95zP]T
通过遵守一定的规程( DFT-Design for Testability ,可测试的设计),可以大大减少生产测试的准备和实施费用。这些规程已经过多年发展,当然,若采用新的生产技术和组件技术,它们也要相应的扩展和适应。本文主要介绍电路可测试性的相关知识,以及如何提高电路可测试性。 X8CVY0<o
1、什么是可测试性 4/MNqit+
可测试性的意义可理解为︰测试工程师可以用尽可能简单的方法来检测某种组件的特性,看它能否满足预期的功能。简单地讲就是︰ A3s57.Z]|
l.检测产品是否符合技术规范的方法简单化到什幺程度? l)8sw=
编制测试程序能快到什幺程度? gaeOgP.0
发现产品故障全面化到什幺程度? r/AHJU3&eY
接入测试点的方法简单化到什幺程度? (I=6Nnt'
为了达到良好的可测试必须考虑机械方面和电气方面的设计规程。当然,要达到最佳的可测试性,需要付出一定代价,但对整个工艺流程来说,它具有一系列的好处,因此是产品能否成功生产的重要前提。 Q]\j>>
2、为什么要发展测试友好技术 _4R,Ej}
过去,若某一产品在上一测试点不能测试,那幺这个问题就被简单地推移到直一个测试点上去。如果产品缺陷在生产测试中不能发现,则此缺陷的识别与诊断也会简单地被推移到功能和系统测试中去。 zilaP)5x6
相反地,今天人们试图尽可能提前发现缺陷,它的好处不仅仅是成本低,更重要的是今天的产品非常复杂,某些制造缺陷在功能测试中可能根本检查不出来。例如某些要预先装软件或编程的组件,就存在这样的问题。(如快闪存储器或 ISPs ︰ In-System Programmable Devices 系统内可编程器件)。这些组件的编程必须在研制开发阶段就计划好,而测试系统也必须掌握这种编程。 \dV Too
测试友好的电路设计要费一些钱,然而,测试困难的电路设计费的钱会更多。测试本身是有成本的,测试成本随着测试级数的增加而加大;从在线测试到功能测试以及系统测试,测试费用越来越大。如果跳过其中一项测试,所耗费用甚至会更大。一般的规则是每增加一级测试费用的增加系数是 10 倍。通过测试友好的电路设计,可以及早发现故障,从而使测试友好的电路设计所费的钱迅速地得到补偿。 `P.CNYR<J
3、文件资料怎样影响可测试性 !Zs,-=^D
只有充分利用组件开发中完整的数据资料,才有可能编制出能全面发现故障的测试程序。在许多情况下,开发部门和测试部门之间的密切合作是必要的。文件资料对测试工程师了解组件功能,制定测试战略,有无可争议的影响。 f z%tA39m
为了绕开缺乏文件和不甚了解组件功能所产生的问题,测试系统制造商可以依靠软件工具,这些工具按照随机原则自动产生测试模式,或者依靠非矢量相比,非矢量方法只能算作一种权宜的解决办法。 kZ[mM'u#
测试前的完整的文件资料包括零件表,电路设计图数据(主要是 CAD 数据)以及有关务组件功能的详细资料(如数据表)。只有掌握了所有信息,才可能编制测试矢量,定义组件失效样式或进行一定的预调整。 k18$JyaG
某些机械方面的数据也是重要的,例如那些为了检查组件的焊接是否良好及定位是否所需要的数据。最后,对于可编程的组件,如快闪存储器, PLD 、 FPGA 等,如果不是在最后安装时才编程,是在测试系统上就应编好程序的话,也必须知道各自的编程数据。快闪组件的编程数据应完整无缺。如快闪芯片含 16Mbit 的数据,就应该可以用到 16Mbit ,这样可以防止误解和避免地址冲突。例如,如果用一个 4Mbit 存储器向一个组件仅仅提供 300Kbit 数据,就可能出现这种情况。当然数据应准备成流行的标准格式,如 Intel 公司的 Hex 或 Motorola 公司的 S 记录结构等。大多数测试系统,只要能够对快闪或 ISP 组件进行编程,是可以解读这些格式的。前面所提到的许多信息,其中许多也是组件制造所必须的。当然,在可制造性和可测试性之间应明确区别,因为这是完全不同的概念,从而构成不同的前提。 'F5)ACA%
4、良好的可测试性的机械接触条件 @ER1zKK?
如果不考虑机械方面的基本规则,即使在电气方面具有非常良好的可测试性的电路,也可能难以测试。许多因素会限制电气的可测试性。如果测试点不够或太小,探针床适配器就难以接触到电路的每个节点。如果测试点位置误差和尺寸误差太大,就会产生测试重复性不好的问题。在使用探针床配器时,应留意一系列有关套牢孔与测试点的大小和定位的建议。 Jz$>k$!UD
5、最佳可测试性的电气前提条件 RWikJ
电气前提条件对良好的可测试性,和机械接触条件一样重要,两者缺一不可。一个门电路不能进行测试,原因可能是无法通过测试点接触到激活输入端,也可能是激活输入端处在封装壳内,外部无法接触,在原则上这两情况同样都是不好的,都使测试无法进行。在设计电路时应该注意,凡是要用在线测试法检测的组件,都应该具备某种机理,使各个组件能够在电气上绝缘起来。这种机理可以借助于禁止输入端来实现,它可以将组件的输出端控制在静态的高欧姆状态。
Ae3,^
虽然几乎所有的测试系统都能够逆驱动( Backdriving )方式将某一节点的状态带到任意状态,但是所涉及的节点最好还是要备有禁止输入端,首先将此节点带到高欧姆状态,然后再“平缓地”加上相应的电平。 263*: Y
同样,节拍发生器总是通过激活引线,门电路或插接电桥从振荡器后面直接断开。激活输入端决不可直接与电路相连,而是通过 100 欧姆的电阻与电路连接。每个组件应有自己的激活,复位或控制引线脚。必须避免许多组件的激活输入端共享一个电阻与电路相连。这条规则对于 ASIC 组件也适用,这些组件也应有一个引线脚,通过它,可将输出端带到高欧姆状态。如果组件在接通工作电压时可实行复位,这对于由测试器来引发复位也是非常有帮助的。在这种情况下,组件在测试前就可以简单地置于规定的状态。 ]u=Ca#!'
不用的组件引线脚同样也应该是可接触的,因为在这些地方未发现的短路也可能造成组件故障。此外,不用的门电路往往在以后会被利用于设计改进,它们可能会改接到电路中来。所以同样重要的是,它们从一开始就应经过测试,以保证其工件可靠。 dS$ji#+d$
6、改进可测试性 ./.=Rw
使用探针床适配器时,改进可测试性的建议 3; y_mg
套牢孔 呈对角线配置 hW%p#g;
定位精度为± 0.05mm (± 2mil ) Dh`=ydI5
直径精度为± 0.076/-0mm ( +3/-0mil ) J@`
8(\(
相对于测试点的定位精度为± 0.05mm (± 2mil ) ^<;w+%[MT
离开组件边缘距离至少为 3mm BXA]9eK
不可穿通接触 EUZq$@uWL
测试点 -N z}DW>
尽可能为正方形 H[BYE
测试点直径至少为 0.88mm ( 35mil ) 0N VI+Z$
测试点大小精度为± 0.076mm (± 3mil ) U**)H_S/~
测试点之间间隔精度为± 0.076mm (± 3mil ) Z| L2oce
测试点间隔尽可能为 2.5mm e\.HWV ]I
镀锡,端面可直接焊接 F< |c4
距离组件边缘至少为 3mm DV,DB\P$
所有测试点应可能处于插件板的背面 a: IwA9!L
测试点应均匀布在插件板上 b42QBTeg
每个节点至少有一个测试点( 100 %信道) RbAt3k;y
备用或不用的门电路都有测试点 )E`+BH
供电电源的多外测试点分布在不同位置 ][t6VA
组件标志 Wp4K6x
标志文字同一方向 d*%Mv[X:<