How Many Rays Do I Need for Monte Carlo Optimization? T#M_2qJ1=
While it is important to ensure that a sufficient number of rays are traced to Fa]|Y
distinguish the merit function value from the noise floor, it is often not necessary to 3^!Y9$y1
trace as many rays during optimization as you might to obtain a given level of |aD8
accuracy for analysis purposes. What matters during optimization is that the 0oT~6BGm
changes the optimizer makes to the model affect the merit function in the same way aK|],L
that the overall performance is affected. It is possible to define the merit function so ,>
%=,x
that it has less accuracy and/or coarser mesh resolution than meshes used for t,D7X1W
analysis and yet produce improvements during optimization, especially in the early t3P$UR%
stages of a design. 9E`Laf
A rule of thumb for the first Monte Carlo run on a system is to have an average of at (FVHtZi7
least 40 rays per receiver data mesh bin. Thus, for 20 bins, you would need 800 rays ya`Z eQ-p
on the receiver to achieve uniform distribution. It is likely that you will need to OSu/!Iv\
define more rays than 800 in a simulation in order to get 800 rays on the receiver. TzSEQS{
When using simplified meshes as merit functions, you should check the before and &9j*Y
after performance of a design to verify that the changes correlate to the changes of TUy
25E
the merit function during optimization. As a design reaches its final performance JE~;gz]
level, you will have to add rays to the simulation to reduce the noise floor so that YY4XCkt
sufficient accuracy and mesh resolution are available for the optimizer to find the g"}j
best solution.