切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 3232阅读
    • 0回复

    [分享]氦氖激光器在光学教学中的应用 [复制链接]

    上一主题 下一主题
    离线lilic
     
    发帖
    241
    光币
    3202
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2009-03-06
    关键词: 激光器
    引言 I;9>$?t[  
    [+UF]m%W  
        第一台气体激光是1961年由贾范(Javan)、贝内特(Bennett)和赫里奥特(Herriott)报导的氦氖激光器。其输出波长为1.15μm,是不可见的红外氦氖激光器。经过40多的发展,氦氖激光器成为目前种类最多,容易制作,质量十分可$&*,应用广泛的激光器。与任何其它气体激光器相比,研究的也较为透彻,对其运转的了解也就比任何其它气体激光器更为深入。 BTqY _9  
    Ahm*_E2E  
        氦氖激光器是中性原子气体激光器中的一个典型例子,也是特别重要的一种激光器。由于气态物质的光学均匀性一般较好,所以气体激光器比固体激光器和半导体激光器来说,输出的光学质量(如单色性,相干性,光束的发散角和稳定性等等)很好,这一点在许多应用中是很重要的。 aVEg%8  
    a(QYc?u  
        随着科学技术的发展,激光技术这一高科技在不断的扩展到国民经济中的各个领域,氦氖激光器以它独有的性能特点首当其冲,广泛的应用在工业、农业、国防、教育、卫生、计量等部门,被用来准直导向、自动控制、精密测量、计量基准、疾病治疗、教学实验,以及作为全息照相、光信息处理、激光光谱、文化娱乐的光源等。随着激光知识的不断普及,激光技术的广泛拓展,被更多的人以及非激光行业的科学工作者所认识,随之出现了与激光有关的交$&*科学,如激光化学、激光生物学、激光光谱学、激光医学等等,氦氖激光器在很多学科中占有不可忽视的地位。 Pi`}-GUe,  
    ry0P\wY}  
        在70年代初期,我国的氦氖激光器就走出了科研单位,进入社会的工厂企业。目前我国生产的氦氖激光器品种很多,常用氦氖激光器的主要性能指标已达到了国际水平,而在性能价格比上,占有极大的优势。由于它结构简单,非常直观的体现出组成激光器的三大部分,即工作物质、谐振腔和激励电源;它使用的材料一般,制作工艺也较为成熟,被广泛的应用到教学中。 +TL5yuA  
    SRyAW\*LWU  
    在教学中使用氦氖激光器可分为两种情况:第一种是利用它单色性好,方向性好和亮度高的特点作为光源,开展几何光学,物理光学,以及近代光学的教学实验;第二种是作为激光器的典型范例,分析其特性,深入了激光器的原理、参数、性能,开展激光和激光技术的教学实验。 -Z9e}$q$,  
    s"s^rC  
    `*^ f =y  
    G[GSt`LVS`  
    一、几何光学教学 [WW3'= e^  
    sk6C/ '0:  
        人们把光的能量看成是沿着一根根光线传播的,它们遵从直进、反射、折射定律,便是几何光学。几何光学实验的主要内容是分析光传播的路径,测定成象位置的大小,观察成象的清晰度以及经过光学系统所成图象上各点的明暗(光强或照度的大小)。 P`0}( '"U  
    v25]}9/C  
        用输出波长为632.8nm氦氖激光描述光线的传播,是很形象的。因为是红光,有一定的光强,发散角很小,将看不见的光线用激光线模拟成可见的光线,直观的看到光线传播。这种典型的教学仪器是激光实验箱,见图。 }N dknut,  
    { HHc} 8  
        实验箱体的大小一般在30cm×45cm,它是用输出2mW的氦氖激光管作光源,用分束镜把光束分成三束,显示在箱体面上。分束镜可以旋转,能够操作成相互平行,发散和会聚的光束。图1显示的是三束平行光束。 F[5[@y  
    < j^8L^  
        该仪器还配有各种光学元件,如平面反射镜,多种的凸透镜、凹透镜,棱镜等,有时还配有简单的作物理光学实验的元件。可以进行的主要实验有: 1%g%I8W%  
    Bu$Z+o  
        ⒈几何光学基本三定律的实验,即光的直线传播定律;光的反射定律;光的折射定律。了解光在均匀的介质里沿直线传播,反射线,入射线,反射角,入射角,折射角,全反射等。 hX;JMQ915  
    =f4>vo}@k  
        ⒉各种透镜的实验。了解凸透镜对光束的会聚,凹透镜对光束的发散,透镜的焦点、焦距、焦面和透镜组等实验。 Fu].%`*xJ  
    >|IUjv2L  
        ⒊棱镜的实验。如直角棱镜的全反现象,光线在三角棱镜主截面内的折射,棱镜的最小偏向角等实验。 }f45>@uMW  
    {B+|",O5)  
    光学仪器的光路实验。如投影仪,显微镜,照相机等。 u 6A!Sw  
    "k&QS@l  
    m`_s_#  
    j6}/pe*;;T  
    二、物理光学实验 O1[`2kj^HB  
    O7vJ`K(!  
    物理光学(波动光学)是研究光波动性(干涉、衍射、偏振)的科学。用氦氖激光作光源有很大的优越性,因为它相干性好,干涉衍射条纹清晰,再加上亮度高,可以在一般照明的实验室中作实验。 kyR=U`OW  
    /r2*le (H  
    kbu.KU+  
    6_}& WjU'  
        ⒈光波的干涉实验 l1 Nr5PT  
    l7vU{Fd-h^  
        一般光强的光波在线性媒质中,服从波的迭加原理。由于波的迭加而引起光强的重新分布,这种现象称之波的干涉。实验者要做好光波的干涉实验,首先掌握光波的分割法。双光束干涉实验和多光束干涉实验分为波面分割与振幅分割。实验有: .d/e?H:  
    (@X].oM^y  
        ⑴扬氏双缝干涉实验 K FMx(fD  
    d^pzMaCI  
        ⑵用罗意镜法实现光波干涉振幅分割的光束干涉实验 H.-VfROi2  
    GE?M. '!{{  
        ⑶利用牛顿环测量透镜的曲率半径R `?P)RS30  
    `0)'&HbLY  
        ⑷利用光通过空气楔产生的干涉测量金属丝的直径 : ZehBu  
    N #C,q&;  
        ⑸用干涉法测量玻璃基板的平行度 .A%*AlX  
    iTUOJ3V7i  
        ⑹迈克尔逊干涉仪的组装 @?bO@  
    pd%h5|*n;  
        ⑺用干涉法测量空气的折射率 2":{3=oW~  
    <+3-(&  
    ⑻用法布里-珀罗标准具精确测定氦氖激光的波长 r" 4u)H>  
    u?xXZ]_u-  
    !N"Y  
    i?^lEqy[  
        ⒉光波的衍射实验 e:`d)GE  
    ;cpQ[+$nKp  
        所谓波的衍射是当波遇到障碍物时偏离了直线传播的现象。不相干的普通光源,光的衍射现象是不明显的。而当我们采用了高亮度相干性好的激光,则可以很容易的将光的衍射现象演示出来。例如: 7:Cq[u fl  
    ^VL",Nt  
        ⑴泊松-阿喇戈光斑的观察 Yl\p*j"Fid  
    NLnfCY-h  
        ⑵圆孔屏的菲涅耳衍射和夫琅和费衍射条纹的观察 A4Sb(X|j  
    jq_E{Dq1  
        ⑶单缝和单丝衍射条纹的观察 ']Z1nb  
    9lU"m_ QT4  
        ⑷直边和矩孔的菲涅耳衍射条纹的观察 lJ>OuSd  
    <36z,[,kZ@  
    ⑸高斯光束的单缝衍射光强分布  iup "P  
    %Bxp !Bj  
    4arqlz lo  
    mto=_|gn  
        ⒊光的偏振实验 <4Ev3z*;Z  
    RvXK?mL4F  
        光的偏振实验证明光波是一种横波,反映了光具有电磁波的性质。通过研究光的偏振状态在介质中传播过程的变化,可以了解光波与物质相互作用的机理。在光波的偏振实验中,一般要研究光扰动的全部参数,振幅,频率,波长,相位(时间相位和空间相位)。主要实验如: nGoQwKIW  
    /l6r4aO2=  
        ⑴用渥拉斯登棱镜模拟双折射现象 +5<]s+4T  
    A,fPl R  
        ⑵补偿器的定标 |K(j XZ)  
    f?Am)  
        ⑶1/4波片的定标 9jkaEn>m^  
    hf('4^  
        ⑷用斯托克斯参数测量椭圆偏振光的参数 yb4Jsk5%  
    oEJYAKN  
    ⑸偏振光的干涉 oj$^87KX  
    09_5niaz[  
    6C@W6DR3N  
    Q |1-j  
    三、傅立叶光学实验 Z23*`yR  
    SI"y&[iw  
        人们把数学,信息论和光学的衍射结合起来,发展一门新的科学――傅立叶光学。傅立叶变换与空间频谱是紧密相联系的,它的基本思想是用空间频谱的语言分析光信息,用改变频谱的手段处理相干成象系统中的光信息,用频谱改变的眼光评价不相干成象系统中象的质量。 .e Jt]K  
    j84g6;4Dv  
        ⑴阿贝成象原理 ^.?5!9U  
    \""sf{S9  
        ⑵高低通滤波实验 ]ucz8('  
    d&G#3}kOb%  
        ⑶验证巴被俾米涅原理实验 Y;I>rC (  
    \:/~IZdzF  
    ⑷理想高斯光束的获得 5&Vp(A[m[  
    }K3!ujvR  
    4z*An}ol]  
    I&Dp~aEM]  
    四、全息和光信息处理实验 -ufO,tJRLL  
    ]>_Ie?L)<  
        早在1948年就有人为提高电子显微镜的分辨本领而提出全息理论,并开始了全息照相的研究工作,但进展一直很慢。激光的出现为全息照相提供了理想的光源,使全息技术的研究进入了一个新阶段,成为科学技术的一个新领域。氦氖激光以它的模式好,相干性好,使用方便的特点,已成为全息以及光信息处理中被广泛使用的光源。有关实验有: @gM>Lxj  
    5vSJjhS  
        ⑴漫反射全息图的拍摄和再现 \2U FJ  
    -1z<,IN+  
        ⑵全息光栅的制备 ~9Jlb-*I5  
    9vL n#_  
        ⑶反射式全息照相(白光再现全息照相) GYJ lX  
    z%0'v`7  
        ⑷彩虹全息图的拍摄 /&jh10}H  
    9\J6G8b>|I  
        ⑸时间平均干涉法测量叶片的振动频率 *p  !F+"  
    xhTiOt6l  
        ⑹二次曝光全息干涉方法测量钢尺的微小变形 7FB aN7l  
    E9]\ I> v  
        ⑺二次曝光全息干涉方法观测灯泡通电后的气流分布 1;FtQnvH  
    fBw"<J{  
        ⑻用全息照相技术测量光学透明材料的不均匀性 }#D+}Mo!,  
    S#[w).7  
        ⑼用傅立叶变换全息进行资料储存 E(p*B8d  
    _Yqog/sG  
        ⑽用傅立叶变换全息进行特征字符识别 ^$VH~i&  
    ^V;h>X|  
    ⑾用散斑照相方法测量漫射体的平移 s%OPoRE  
    PN"s ^]4  
    fC<pCdsg  
    Smc=-M}  
    五、激光原理教学实验 IizPu4|  
    Rv=rO|&]  
        激光是60年代初期出现的新型光源,可以说,激光的问世使古老的光学发生了一场革命。作为典型的氦氖激光器,较为充分的反映出了激光的基本特征,以及激光的基本性能参数。解剖和分析它,对深入的了解激光,进一步研究激光和扩展激光应用范围开拓了思路。主要实验有: q y\Z2k  
    I|eYeJ3  
        ⑴氦氖激光高斯光束发散角的测量 XhEJF !  
    [!'fE #"a  
        ⑵氦氖激光器的模式分析 ,)beK*Iw  
    }\Ri:&?  
        ⑶氦氖激光器增益、损耗和饱和参量的测量 /t=Fx94  
    D\CjR6DE  
        ⑷用光谱相对强度研究氦氖放电管的增益特性 G.l ~!;  
    l'm\ *=3  
    ⑸氦氖激光器的功率与放电参量的关系 *^=zQ~  
    DV5K)m&G  
    cy{ ado2  
    P+2@,?9#  
    六、激光技术实验 )/mBq#ZS  
    Mep ct  
        随着氦氖激光器用途不断的扩展,有关的激光技术也不断的出现。例如氦氖激光器的稳频,选频,单频,锁模,稳功率等技术。这方面的实验有: 15dbM/Gj  
    k[<Uxh%  
        ⑴激光稳频与测量技术 -Ed<Kl  
    2T&n6t$p  
        ⑵氦氖多谱线激光器 zg+6< .Sf  
    )z=L^ot  
        ⑶腔内标准具腔内选模单频激光 0E^6"nt7N  
    4mM?RGWv  
        ⑷声光调制锁模激光器 lFT` WO  
    viXt]0  
        ⑸光学双稳实验 W^8MsdM  
    zNRR('B?  
        ⑹单模光纤维尔德常数的测量 jn,_Ncd#  
    W^"C|4G}  
    七、非线性光学实验 =6H  
    AdGDs+at,  
        非线性光学有关现象可分为三类:1.参量过程,包括倍频、和频、差频、高倍频(高次谐频)和光的参量振荡。2.各种散射现象和它的受激发射。3.多光子吸收、光子电离、光自陷(自聚焦)介质的光致损坏。 J)n^b  
    _|f_%S8a_=  
        光在介质的传播过程,是光与介质相互作用的过程,这个过程有两个相关的分过程:一是光作用在介质上引起的介质的极化,产生宏观的极化强度,为介质的极化过程。另一是光的辐射过程。介质中的光场随时间的变化,所产生的变化极化强度将作为一个光辐射源辐射光波。从极化强度与光电场的关系得知,当入射光的频率为ω时,在介质内引起了2ω、3ω………高次谐波极化强度,从而产生了2ω、3ω………高次谐波的光。当光场较弱时,极化强度与光电场之间呈线性关系,只能引起与入射光相同频率的极化强度,产生相同频率的辐射光波。当光强较强时,能观察到非线性效应。激光的诞生给非线性光学带来了生机。 < ?{ic2j#  
    al@Hr*'  
        ⑴氦氖激光腔内倍频技术 $Si|;j$?  
    mnm 7{?#[  
        ⑵氦氖激光受激喇曼散射
     
    分享到