1)激光间接成模工艺 ^; V>}08
Qqhb]<z
①立体光造形(StereoLithographyApparatus,简称SLA)工艺是利用紫外激光束逐层扫描光固化胶的方法形成三维实体工件的。1986年美国3DSystems公司推出了商品化样机SLA-1。SLA工艺的最高加工精度能达到0.05mm。 f`9rTc
W}_}<rlF
②薄层叠片制造(LaminatedObjectManufacturing,简称LOM)工艺采用薄片材料,如纸、塑料薄膜等,由美国Helisys公司于1986年研制成功。通过反复CO2激光器切割和材料粘贴,得到分层制造的实体工件。LOM工艺的特点是适合制造大型工件,其精度达到0.1mm。 Z_~DTO2Qg
?8}jJw2H
③选择性激光烧结(SelectiveLaserSintering,简称SLS)工艺是利用粉末状材料成形的,由美国德克萨斯大学奥斯汀分校的于1989年研制成功,通过用高强度的CO2激光器逐层有选择地扫描烧结材料粉末而形成三维工件,SLS工艺最大的优点在于选材较为广泛。 SW'KYzn
q;PzB4#
上述三种激光快速成形技术由于发展时间长,技术相对比较成熟,在国内外都得到了较为广泛的应用。但上述方法形成的三维工件都不能直接作为模具使用,需要进行后续的处理,所以称之为激光间接成模工艺。 c qyh#uWe
^ED>{UiNI
主要的处理方法有: TC#B^m`'p
①快速成形工件处理后用作模具。LOM制作的纸模经表面处理直接代替砂型铸造木模;或者用LOM制作的纸模具经表面处理直接用作低熔点合金铸模、注塑模;或失蜡铸造中蜡模的成形模。SLS制作的工件经渗铜后,作为金属模具使用。 6b01xu(A[
E+Mdl*
②用快速成形件作母模浇注硅橡胶、环氧树脂、聚氨脂等材料制作软模具。 #7T ={mh
=~m"TQv
③用快速成形件翻制硬模具。一种是直接用LOM制作纸基模具,经表面金属电弧喷镀和抛光后研成金属模;另一种是金属面硬背衬模具。上述硬模具可用于砂型铸造、消失模的压型制作、注塑模以及简易非钢质拉伸模。 j5GZ;d?
X(z-?6N4
用上述激光间接成模工艺制作模具,既避开了复杂的机械切削加工,又可以保证模具的精度,还可以大大缩短制模时间、节省制模费用,对于形状复杂的精度模具,其优点尤为突出。但是,目前还存在着模具寿命相对较短的缺点,所以上述激光间接成形模具较适合于小批量生产。 8J1.(Mwb?
'="){
2)激光直接成模工艺 w>Sz^_ h
选择性激光熔化(SelectiveLaserMelting,简称SLM)技术是在选择性激光烧结(SLS)技术的基础上发展起来的。SLM的特点为:(1)使用高功率密度,小光斑的激光束加工金属,使得金属零件具有0.1毫米的尺寸精度;(2)熔化金属制造出来的零件具有冶金结合的实体,相对密度几乎能达到100%,大大改善了金属零件的性能;(3)由于激光光斑直径很小,因此能以较低的功率熔化高熔点的金属,使得用单一成分的金属粉末来制造零件成为可能。图2所示为德国EOSGmbH公司利用选择性激光熔化(SLM)工艺制造的全金属零件。 M':.b+xN
g|_*(=Q
激光多层(或称三维/立体)熔覆直接快速成形技术是在快速原型技术的基础上结合同步送料激光熔覆技术所发展起来的一项高新制造技术,其实质是计算机控制下的三维激光熔覆。 ;<<IXXKU
.Q)"F /
由于激光熔覆的快速凝固特征,所制造出的金属零件具有均匀细密的枝晶组织和优良的质量,其密度和性能与常规金属零件相当。激光多层熔覆发展出了多种方法,其中最具代表性的是美国Sandia国家实验室(SandiaNationalLaboratories)研发的称作激光工程化净成形技术(LaserEngineeredNetShaping,简称LENS)的金属件快速成形技术。采用该方法已成功制造了不锈钢,马氏体时效钢,镍基高温合金,工具钢,钛合金,磁性材料以及镍铝金属间化合物工件,零件致密度达到近乎100%。图3为美国Sandia国家实验室以LENS技术制造的金属模具。 k ,(:[3J
bLF0MVLM
选择性激光熔化(SLM)技术和激光工程化净成形(LENS)技术由于成形件致密性好,且具有冶金结合组织及精度高,制成的模具寿命长的特点,已得到了工业界和学术界的普遍重视,在国外已推出了多种设备样机,有的甚至开始商品化了;而国内目前的研究和应用还处于起步阶段。 ADz|Y~V!
,!4_Uc
另外,还有一种基于激光精细切割的金属零件分层制造技术(LOM),具有可快速、低成本制造大型、复杂形状的模具的特点。日本中川威雄研究室早在80年代就应用金属薄板LOM技术实现了金属模具的分层快速制造。经过发展,金属薄板LOM技术已逐渐应用于诸如汽车等大型内外饰件模具及具有复杂流道注塑模的制造。 DP]|}8~L
C$gLi8|m
模具表面激光改性 OR8o%AxL7
C8q-gP[
模具表面处理一直是机械加工领域中所重视的问题。随着新技术新工艺的发展,有许多传统的处理方式已不太适用。对形状复杂的模具,最理想的表面处理方式是用激光进行,它几乎不变形,表面硬度比常规处理方式的硬度高,并且更耐磨,使用寿命更长。 Z5-'|h$|
Lpf=VyqC
1)激光相变硬化 q~_jF$9SX
FQ)Ekss~C
激光相变硬化又称激光淬火。由于激光淬火时冷却速度远远超过常规淬火冷却速度,从而可以获得极细的马氏体组织。激光相变硬化的优点为硬度较常规淬火高、变形小、可实现表面薄层和局部淬火,不影响基材的机械性能等。 oU? X"B9
}TvAjLIS6
2)激光冲击强化 E/;YhFb[
!:{_<