切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2636阅读
    • 0回复

    [分享]不同材料零件的喷丸强化介绍 [复制链接]

    上一主题 下一主题
    离线skype
     
    发帖
    327
    光币
    1697
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2008-11-24
    — 本帖被 cyqdesign 从 机械加工与制造 移动到本区(2010-12-09) —
    高强度钢 j5/H#_ .  
    NKI&n]EO  
    由抛丸/喷丸强化引入的残余压应力是最终拉应力强度的一个百分比,该比率随着零件材料本身强度/硬度增加而增加。高强度/硬度的金属更脆,且对表面缺陷更敏感。对其进行抛丸/喷丸强化,能让这些高强度金属可以应用在易发生疲劳的工作条件下。飞机起落架通常设计的疲劳强度为300 ksi (2068 MPa),结合抛丸/喷丸强化。 { _ 1q`5o  
    (ZI&'"H  
    没经过抛丸/喷丸强化的,机加工后的钢制零件在硬度为30 HRC.左右能取得最佳的疲劳属性。如材料强度/硬度超过这个水平,其疲劳强度会由于对表面缺口的敏感性和脆性增加而降低。通过导入的压应力,疲劳强度与增加的强度/硬度成比率提高。当材料硬度为52 HRC,强化后的疲劳强度可达144 ksi (993 MPa),比未经过强化的同样材料抗疲劳强度增加了2倍多。 A!^,QRkRN  
    5?I]\Tb  
    利用抛丸/喷丸强化改善高强度/硬度零件的典型应用包括对扳手和冲击工具等。此外,表面的浅刮痕对于经过抛丸/喷丸强化的高强度钢的疲劳强度影响不大,而对于未经强化的则破坏性很大。 OVivJx  
    ` 86b  
    渗碳钢 .g|pgFM?  
    Tw`l4S&  
    渗碳和渗氮都是热处理过程,能让钢表面具有非常高的硬度。通常在55~62 HRC。渗碳钢强化的好处在于: rB7(&(n>^  
    W&yw5rt**  
    ·在~200 ksi (1379 MPa)或更高的高应力水平下,能提供卓越的疲劳属性 tr'95'5W.  
    ·减少表面晶格间因氧化而造成渗碳异常情况 RI%l& Hm  
    nC*/?y*9  
    对于完全渗碳和渗氮处理过的零件,要取得最佳的抗疲劳属性,建议使用硬度为55-62 HRC的丸料。 ,Y5+UzE@  
    Lh,<q >t  
    脱碳钢 iFDQnt [t  
    (>Yii_Cd  
    脱碳是在热处理过程,铁合金表面碳含量减少。脱碳会降低高强度钢(240 ksi, 1650 MPa 或以上)的疲劳强度70-80%;能降低低强度钢(2140-150 ksi, 965-1030 MPa)的疲劳强度45-55%。脱碳对于疲劳属性的破坏力与脱碳层深度并无特别的关系。脱碳层在0.003英寸深度,其破坏力与0.030英寸深度是一样的。 "xO`&a{  
    +_ G'FD  
    强化工艺被证实为一种有效的方法,能恢复大部分由于脱碳过程损失的疲劳强度。因为多数零件的脱碳层不容易确定,所以当怀疑零件有脱碳情况时,建议对其进行强化处理以确保零件完好的抗疲劳属性。如果一个高硬度(58+ HRC)齿轮在强化后,表面呈现异常的严重凹陷,这可能被怀疑有脱碳存在。脱碳还经常伴有残余奥氏体的不良冶金状态。通过冷加工的抛丸/喷丸强化,能减少残余奥氏体百分比。 <T&$1m{  
    ~\kRW6  
    奥贝球铁 SB F3\  
    :g\qj? o  
    改善过的奥贝球铁在一些工程领域,能替代铸钢、铸件、焊接件。它具有优良强重比和耐磨性。奥贝球铁在某些高强度应用条件下,也能取代铝,它的密度是铝的2.5倍,而强度则是铝的3倍以上。通过抛丸/喷丸强化,该材料的弯曲疲劳强度还能提高75%。某些等级的奥贝球铁经强化后,能媲比用于齿轮制造的渗碳钢。 nh8h?&q|  
    ;x7SY;0*  
    铸铁 LS_QoS  
    ']rh0?  
    近年来,球墨铸铁件的需求逐年增加,因为它具有相对较高的抗疲劳载荷性能。球墨铸铁件通常是没经过机加工,用于需承受载荷应力工作状况下。铸件表面存在的缺陷,如气孔、浮渣、片状石墨等都会相当程度地减低未经机加工的珠光体球铁疲劳属性。根据铸铁件表面的缺陷状况,零件疲劳极限严重的,会降低40%之多。 !C+25vup  
    onmO>q*  
    抛丸/喷丸强化能改善表面存在小缺陷的铸铁件之疲劳属性。比如,柴油机缸体内衬护板件。在试验中使用了最大的强化强度,疲劳极限低于完全机加工过的零件样本疲劳极限6%左右。如果没有经过强化,疲劳极限低于完全机加工过的零件样本疲劳极限20%。此外,从外观看,经过强化的铸铁件表面呈现抛光效果,光泽、光滑。 P&SR;{:y  
    [NFAdE  
    铝合金 v>e4a/  
    ^KhFBed   
    传统的高强度铝合金(2000系列和7000系列)由于其具有高强重比,早已普遍应用在航空领域。以下一些铝合金材料在航空/航天制造业方面的应用也逐渐增加,抛丸/喷丸强化工艺对其也具有很好的效果: FUOvH 85f  
    R.fRQ>rI  
    ·铝锂合金 (Al-Li) 0b|!S/*A3  
    ·等向性金属基复合材料(MMC) &=UzF  
    ·铸铝 (Al-Si) #&/*ll)  
    |On6?5((e  
    v0y7N_U5n  
    F 4h EfO3  
    高周疲劳(HCF) –钛高周疲劳,比较了高性能欧洲赛车上所用的钛合金连杆之疲劳属性。通过抛丸/喷丸强化,钛合金连杆比钢制连杆,重量减轻了40%而疲劳极限则增加了20%。肽材料低周疲劳(LCF)最常见的应用是对于旋转涡轮发动机零件(如涡轮盘、转子、轴),这些零件在抛丸/喷丸强化后能提高耐用性。每一次的起飞和降落视为一个循环次数。 q'@UZ$2  
    4 IHl'*D[#  
    低周疲劳(LCF) – 高周疲劳断裂失效与低应力水平相关,低周疲劳断裂失效与高应力水平相关。 :V"}"{ (6  
    +Rvj]vd}&  
    对一个旋转发动机零件上的燕尾槽进行抛丸/喷丸强化后的结果。有2条未经强化的基准载荷曲线。使用了抛丸/喷丸强化后,循环疲劳曲线明显改善。 !Zwl9DX3  
    &0l Nj@/  
    *GDU=D}  
    jc?Hip'  
    镁合金通常不需要进行抗疲劳处理。但如果考虑到降低重量,改善零件强-重比的时,利用抛丸/喷丸强化能提高零件25-35%的疲劳强度。 VT9$&\)>O  
    4+~+`3;~v  
    粉末冶金 \\T I4A^#  
    PNG'"7O  
    合理的强化能延长合金烧结钢耐疲劳极限22%。汽车零件如齿轮、连杆是粉末冶金材质进行强化的典型应用,特别对于高密度的粉末冶金锻造件,强化以提高疲劳属性非常有效。通过抛丸/喷丸强化,使表面致密化,能极大地提高疲劳极限度,特别适用于长期处于弯曲疲劳服役条件下的零件。
     
    分享到