最新研究结果显示,m晶面氮化镓材料制作的
半导体激光器有潜力克服现有蓝光二极管技术所面临的挑战。
y~q8pH1
\Ta"}TF8 自1996年蓝紫波段的氮化镓半导体
激光器首次成功运转以来,十年间,人们已经在该领域取得了相当显著的成绩。外延生长技术的进步、低缺陷衬底材料和成熟的器件设计,已经使具有商业化价值的高性能
激光器成为现实。这些产品已作为关键部件应用于下一代DVD播放系统中,比如蓝光光盘和HD-DVD。此外,这些
激光器也非常适合用于投影显示、高精度印刷和
光学传感等领域。
ldiD2
Q 4)A#2 然而,传统的氮化镓
激光器虽然取得了巨大成功,却受困于材料固有的限制,也就是外加电场的极化特性制约了激光器的光学效率。为了解决这一基础性问题,加州大学圣巴巴拉分校的研究小组一直在探索采用无极性晶面制作氮化镓激光二极管,从而避免极化电场的影响。无极性氮化镓激光二极管作为一种备选结构已得到迅速改进,它正像人们所期望的那样,正在替代基于极性c面的传统结构。
v2B0q4*BS? 9y<*8bI 传统的氮化镓激光二极管制作在纤锌矿晶格的c平面上,因此存在异质结构自发的压电极化效应。[1] 这些极化效应产生干扰InGaN量子阱的电场,使阱区能带变为三角型,电子和空穴的波函数在空间上发生分离,导致辐射复合效率降低。对于电注入激光二极管而言,外部注入的载流子必须经过这些电场区域,并且在获得有效增益前先要填平倾斜的能带。这个过程相当于使激光器的阈值电流密度增大。
v^#~98g] DNr@u/>vB 而且,c面结构通常要求采用小于4nm厚的薄层量子阱,以缓解与极化相关的效应,因为量子阱厚度较大时极化干扰非常强。这一要求给c面氮化镓激光器带来了
光学设计上的难题。困难之一就是需要引入较厚的含铝的波导覆盖层,比如AlGaN/GaN超晶格,用于实现所需的横向光场限制。然而,较厚的含铝层通常加工起来很困难,会出现破裂、工作电压更高、良品率更低、电抗稳定性变差等问题。
!HnXXVW Q36qIq_0e 为了解决这些问题,科研人员一直在开发基于氮化镓无极性面的器件结构。与c面激光二极管相比,无极性面激光二极管制作在纤锌矿晶格的侧面上,也就是常说的m面。这样的器件不受极化电场的影响,而c面器件则深受极化电场的影响。m面氮化镓上生长的InGaN量子阱的能带不发生变形,其矩形结构比传统的砷化镓和磷化铟上的量子阱保持得更好。这些量子阱中不存在电子和空穴波函数分离的问题,而这在c面结构中是非常典型的。此外,由于没有极化电场的影响,也就不需要有额外的载流子来保证有效的光学增益。实际上,理论分析预计这些结构将具有更高的光增益。[2]
f33 l$pOp H@%GSE 不易实现低缺陷密度衬底已成为开发基于无极性氮化镓的
发光二极管(
LED)和激光二极管的一大障碍。最初,研究人员尝试在其他衬底材料上采用异质外延生长无极性氮化镓。但是,这种
薄膜材料具有高密度线位错和错层等材料缺陷,制约了器件的光学性能。幸好,日本Mitsubishi化学公司最近开发出了一种低缺陷密度自支撑的m面氮化镓衬底。这种衬底采用c晶向的氢化物气相外延(VPE)生长获得,然后垂直切割获得m面。m晶面的表面再采用化学机械表面处理方法进行加工。最终得到的衬底具有小于5×106cm-2的线位错密度,由此使高效的无极性氮化镓激光二极管得以制造成功。
>'&p>Ad) ]Q>.HH 2007年2月,UCSB和日本Rohm的两个研究小组分别报道了制作第一支无极性氮化镓激光二极管的信息。[3],[4] UCSB最初报道的器件是以脉冲模式激励的大模场增益导引激光器,阈值电流密度为7.5kA/cm2。Rohm宣称采用折射率导引脊形激光器结构实现了连续工作模式,激光器的最大输出功率为10mW,阈值电流密度为 4.0kA/cm2。两个研究小组都采用金属有机物化学气相沉积(MOCVD)方法来生长制作器件所需的材料,他们使用的自支撑m晶面氮化镓衬底均来自Mitsubishi化学公司。
uTKD 4yig P} 0%-JC 无AlGaN覆盖的结构
w8U&ls