引言
4Cv*zn "T9UedZ 通常轴的长度与之直径比大于20~25(即L/d≥20~25)的轴称之为细长轴。而加工Ø35×4095、Ø10×1300长轴时,因径长比达1:100至1:150左右,属超细长轴加工。
1yVhO2`7] YjH~8= = 超细长轴
车削的工艺特点:①超细长轴刚性很差,车削时装夹不当,很容易因切削力及重力的作用而发生弯曲变形,产生振动,从而影响加工精度和表面粗糙度。②超细长轴的热扩散性能差,在切削热作用下,会产生相当大的线膨胀。如果轴的两端为固定支承,则工件会因伸长而顶弯。③由于轴较长,一次走刀时间长,
刀具磨损大,从而影响零件的几何形状精度。④车超细长轴时由于使用跟刀架,若支承工件的两个支承块对零件压力不适当,会影响加工精度。若压力过小或不接触,就不起作用,不能提高零件的刚度:若压力过大,零件被压向车刀,切削深度增加,车出的直径就小,当跟刀架继续移动后,支承块支承在小直径外圆处,支承块与工件脱离,切削力使工件向外让开,切削深度减小,车出的直径变大,以后跟刀架又跟到大直径圆上,又把工件压向车刀,使车出的直径变小,这样连续有规律的变化,就会把细长的工件车成“竹节”形。造成
机床、工件、刀具工艺系统的刚性不良给切削加工带来困难,不易获得良好的表面粗糙度和几何精度。
HuJc*op-6 Q':hmulT! 我们在实践中,经过不断摸索,采用各种车削装置:如三支承块跟刀架、弹性活络顶针、垫块、托架支承:车削中采用反向进给车削,配合以最佳的刀具几何参数、切削用量、等一系列有效措施。提高了超细长轴的刚性,满足了加工要求。使的加工的超细长轴效果良好,表面粗糙度达到Ra3.2以上,锥度误差在工件全长4m中仅0.04mm,椭圆度为0.01mm,弯曲度仅为0.15mm。且工效大大提高。
h+ud[atk. \<ysJgqUG 1 超细长轴车削装置
~Up{zRD"B Evd|_ W- 1) 工件装夹
?}uuTNLl) HItNd 在卡盘夹紧工件的卡爪面垫入Ø4×20mm钢丝,夹入长度为15~20mm,如图1所示,使工件与卡爪之间为线接触。
@S=9@3m{w; FgL892[ QFMAy>Gdn Ek1c >s,t 图1 工件装夹
在尾座装置弹性活络顶针,当工件发生弯曲变形或受热膨胀时,顶针能作一定的轴向位移。
"Kdn`zN{ :AS`1\ C 2) 跟刀架结构
em'ADRxG+ `XpQR=IOMb 跟刀架固定在床鞍上,一般有两个支承爪,跟刀架可以跟随车刀移动,抵消径向切削时可以增加工件的刚度,减少变形。从而提高细长轴的形状精度和减小表面粗糙度。从跟刀架的设计原理来看,只需两只支承爪就可以了,因车刀给工件的切削抗力F'r,使工件贴住在跟刀架的两个支承爪上。但是实际使用时,工件本身有一个向下重力,以及工件不可避免的弯曲,因此,当车削时,工件往往因离心力瞬时离开支承爪、接触支承爪而产生振动。如果采用三只支承爪的跟刀架支承工件一面由车刀抵住,使工件上下、左右都不能移动,车削时稳定,不易产生振动。因此车超细长轴时一个非常关键的问题是要应用三个爪跟刀架,结构如图2所示。
?xrOhA9 SnR2o3r-Of Qz3Z_V4k9 Ulx]4;uzf 图2 跟刀架
%IZd-N7i^ yOt#6Vw 为使跟刀架保持良好的刚性,配备有三只支承块(材料为QT60-2),使其与工件研磨后紧密贴合。跟刀架支承块与工件表面接触不良,留有间隙,易造成工件中心偏离旋转中心,从而产生多边形。应合理选用跟刀架结构,正确修磨支承块弧面,使其与工件良好接触。切削运行时呈滑动配合,使工件保持在切削旋转轴线上。
rlD!%gG2x &a;?o~%*]i 在调整和修磨跟刀架支承块后,如接刀不良,使第二次和第一次进给的径向尺寸不一致,引起工件全长上出现与支承块宽度一致的周期性直径变化,在切削中出现轻度竹节形。可通过调节上侧支承块的压紧力,使支承块与工件保持良好接触:通过调节中拖板手柄,改变切削浓度或减少车床大拖板和中拖板间的间隙:从而加以消除。
IzJq:G. px"H 3) 垫块
xP!QV~$> S>r",S 除跟刀架装置外,还可根据工件长度,在工件下面垫放不等距的木块(在切削中随放随取,保证拖板正常进给),木块直接垫放在床身上其厚度以能轻微托牢工件为宜,木块制成半圆弧凹坑,运行时加机油润滑。这种垫块还具有消振作用,如图3所示。
a]T&-#c,} O`Gq7=X 图3 垫木
4) 托架支承
NB4O,w !~yBzH;K 对直径较小的超细长轴,因装夹、发热等各种因素造成的工件偏摆,导致切削深度变化。可利用托架托架支承,如图4所示,并改善托架与工件的接触状态。
;}j(x;l>t HA*L*:0 图4 托架
2 刀具设计
fjVy;qJ32S Id##367R 刀具几何参数和切削用量选择不当,造成切削力过大,发生弯曲变形和表面粗糙,工件装夹不良,尾座顶尖与工件中心孔顶得过紧,在上述夹紧方式下,采用反向走刀车削,使工件受力后能向弹性顶针处伸缩,如图5所示。
H#DvCw 3TH?7wi 图5 反向走刀车削
1) 粗车刀
r`.N? P/girce0 刀具特点:①主偏角较大,使径向力P
y减小,轴向力P
x增大,能减少切削振动和弯曲变形:②前角g=15°~20°切削轻快:③断屑槽磨成R 2.5~4mm,有良好的卷屑作用,并增大实际切削前角。
ZGDT
6, Hddc-7s 刀具材料:刀片牌号YT15,型号A117:刀杆45号钢,调质HB220~250。
tw>2<zmSi% Cf3!Ud 2) 精车刀
C!*.jvhT "GZieI
D 刀具特点:①具有较大前角,刀尖无倒棱,切削轻快,切屑呈铝箔纸状:②刀刃宽度大于走刀量1.3倍以上,可以修光工作表面:③有1.5°~2°刃倾角,切屑沿待加工表面排出:④刀刃必须研磨平直,表面粗糙度达Ra0.8以上。
z8'1R6nq Iz5NA0[=2 刀具材料:刀片牌号W18Cr4V,热处理HRC63~66;刀杆弹性刀排。
\7uM5 k}l {VL@U$'oI 可磨出刀尖圆弧半径,当工件长度与直径比较大时亦可采用宽刃低速光车。
>
'hM"4f Pps-,*m 3) 切削用量
R2gV(L(!! +7^p d9F. 粗车时:切削速度v=32m/min;走刀量f=0.3~0.35mm/r;切削深度a
p=2~4mm。
RHg-Cg` ]mb8R:a1 精车时:切削速度v=1.5m/min;走刀量f=12~14mm/r;切削深度a
p=0.02~0.05mm。
%)x9u$4W2 `daqzn 作者:南华大学机械工程学院 厉善元 唐卫东
$Sgf jm