计算全息再现质量提升技术的研究
随着三维显示技术的发展,三维显示技术的研究日新月异,人们希望获得更为真实的视觉体验。全息显示作为真三维显示技术,能够提供人眼感知三维物体所需的全部深度信息,给人以舒适、真实的三维立体视觉感。全息技术在军事、医疗、商业以及其他领域有着广泛的应用。 计算全息显示技术发展至今仍存在着再现像质量差、计算速度慢与全息再现像的尺寸小和视区窄等关键性问题,其中,散斑噪声作为计算全息显示的固有问题而制约着其进一步发展,本文从抑制散斑噪声和扩大视区(FOV)两个角度出发,使得图像的质量改善。 计算全息再现质量提升技术的研究 首先明确什么是光学全息? 光学全息是一种记录和再现物体信息的成像技术。其原理是:将物体发出的光波和已知振幅和相位的光进行干涉,将它们记录在感光介质上,然后,通过光的衍射原理,用特定的照明方式将记录下来的感光介质照亮,在再现过程中就可以重现原始物体的全部信息。 相比于光学全息,计算全息的基本原理是什么? 计算全息的基本原理是:通过计算机算法实现物光波的相位分布,然后将这些信息转换成数字信号,存储在计算机中。接着,通过数字信号处理技术将这些相位信息转换成一系列控制信号,然后通过光学器件(如液晶屏、光栅等)将这些控制信号转化成光学全息图像。与光学全息不同,计算全息不需要光学显影过程,因此可以实现高速、高精度的全息图像生成。 ![]() 图1 计算全息光学再现示意图 本实验所采用的空间光调制器为我司的FSLM-2K55-P,其参数规格如下:
计算全息显示中散斑噪声的来源全息显示中的激光散斑现象被视为影响全息再现像质量的光学干扰,称为散斑噪声。纯相位全息图可以获得高质量的再现像。然而,纯相位全息图获取算法的缺陷和再现光源的高度相干性会导致散斑噪声的存在,所以必须采取措施抑制散斑噪声。 在全息图计算中加入初始随机相位是必要的,因为它可以使得物体的高频信息得到传递和重建。而物面不加入初始随机相位时只有部分高频信息能传递到全息面上,导致低频信息的丢失,影响再现时的物体重建质量。 ![]() 图2 全息图的记录和再现过程示意图 全息再现像中的散斑噪声还有其他的来源,主要分为以下四个部分: a)在全息图编码过程中,物面的振幅信息丢失会导致散斑噪声的产生。 b)在全息再现系统中,由于SLM的孔径限制,使得再现光会产生额外衍射,导致散斑噪声的出现。 c)在全息图的记录过程中,全息面上的物光波会受到全息面大小限制而接收部分信息,这使得散斑噪声的出现。 d)全息显示系统中的光学器件出现表面缺陷,会造成粗糙表面的形成,高相干性的再现光源照射后会导致散斑噪声产生。 为了抑制散斑噪声,可采用时间平均法和像素分离法等方法。下面简单介绍一些散斑噪声抑制方法。1. GS算法Grechberg-Saxton(GS)算法是目前获取纯相位全息图中较成熟的算法。这种算法需要在满足物平面和全息面设定的约束条件下经过多次的傅里叶变换和逆变换的迭代计算,得到衍射率较高的相位全息图。其算法流程图如下图所示。 ![]() 图3 GS算法流程图 |