雙膠合薄透鏡有三個鏡面自由度,滿足焦距後僅可再滿足球差S1,中心彗差S2C,色差CL三種像差中之任兩項。因此其透鏡解法通常是先找出所有符合某兩項像差值之結構,再從中將接近第三像差目標值之結構挑選出來。 =9,mt
K~
#>_t[9;
PWC法中的P, W, C 和S1, S2C, CL 是完全等效的,只是差一規化係數: P=S1/h, W=S2C/H, C=CL/(h*h),其中h是邊緣光入射高,H是光學不變量。常見的PWC求解雙膠合的步驟是先滿足焦距及色差,再用查表法尋找可同時接近P及W目標值的玻璃對及鏡面半徑。 9V)cf
e3n^$'/\r
然而方法不是只有這一種。光學界對求解雙膠合透鏡之研究已有百年歷史,以下介紹幾篇相關論文: zecM|S _
kPOk.F%)
1. Khan 及 Macdonald [1] 運用一系列事先繪好之圖形以查驗可同時接近三種像差值之結構。其論文中也回顧了一些雙膠合透鏡求解法的歷史: 0qR#o/~I
(A) 1920年,Turriere 運用 Mossotti 於 1897 年所導出之方程式,求解當物在無限遠且球差及色差為零時之結構。 MZVbOcSAd
(B) 1946 年,Brown 與 Smith 運用查表法求解,同樣的,僅適用於物在無限遠且球差及色差為零情況。 &H+ wzx<
(C) 1949 年,Slussarev 亦運用查表法求解物在無限遠,但像差可為色差及球差,或色差及彗差之情況。 Z^]Oic/0Oa
(D) 1954 年,Argentier 提出了比 Turriere-Mossotti 方法更簡單之遞迴式演算法,使之可用於物在無限或有限距離之情況,但仍限制球差,彗差及色差必須為零。 fV9+FOZn
(E) 1970年,Hopkins 及 Rao [2] 推導出雙膠合透鏡之球差及彗差公式,並說明將另行發表求解結構的方法。 R:P),
(F) 1974年,Blandford 推導出可給定任意球差及中心彗差,但不能設定色差之解法。 K:XXtG
gD%o0jt"
2. Dreyfus等[3]應用人工查驗圖型的方式,以選擇玻璃材料,滿足球差、色差、彗差均為零之雙膠合透鏡。
6!)hl"
DaH4 Br.2
3. Banerjee及Hazra用基因法求解雙膠合透鏡[4-6]。 dw#pObH|`
$o9^b
Z
4. Chen [7]求解了非球面雙膠合鏡片。由於多了非球面係數的自由度,可同時精確滿足焦距及三個像差目標值。 N]8/l:@
Wv5=$y
參考文獻 c-zW
2;|61
[1] M. I. Khan and J. Macdonald, “Cemented doublets: a method for rapid design,” Optica Acta 29, 807–822 (1982). F+c8
O
[2] H. H. Hopkins and V. Rao, “The systematic design of two-component objectives,” Optica Acta 17, 497 (1970). /p;OZf]
[3] M. G. Dreyfus, R. E. Bishop, and J. E. Moorhead, "Aplanatic cemented doublet design," Journal of the Optical Society of America, 50(4), 375-378 (1960) gT[] "ZT7
[4] S. Banerjee and L. N. Hazra, “Structural design of doublet lenses with prespecified aberration targets,” Opt. Eng. 36, 3111–3118 (1997). CWZv/>,%
[5] S. Banerjee and L. Hazra, “Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets,” Appl. Opt. 40, 6265–6273 (2001). e8SAjl"}
[6] S. Banerjee and L. N. Hazra, “Structural design of broken contact doublets with prespecified aberration targets using genetic algorithm,” J. Mod. Opt. 49, 1111–1123 (2002). \B
8 j9
[7] Chao-Hsien Chen, “Methods of solving aspheric singlets and cemented doublets with given primary aberrations," Applied Optics, 53(29), H202-212 (2014)