超高速、超长中继距离传输一直是
光纤通信所追求的目标。而光纤损耗、色散和非线性效应是其发展的主要限制因素。光纤的色散使光信号的脉冲展宽,而光纤中还有一种非线性的特性,光纤的非线性特性在光的强度变化时使频率发生变化,从而使传播速度变化,这种特性会使光信号的脉冲产生压缩效应。
{, *Y 非线性作用会部分抵消色散所带来的脉冲展宽,当两种效应达到平衡时,光脉冲在传播过程中脉冲宽度不再发生变化,光脉冲就会像一个一个孤立的粒子那样变成了理想的光脉冲,这种脉宽不再随传播过程变化的理想脉冲,称为
光孤子。
d`],l\oC J%O4IcE 1.仿真任务
M;TfD 本课程演示了在由SMF(单模光纤)组成的500km光链路上以10Gb/s传输的平均光孤子
系统。
]x(2}h^S 光孤子通信系统脉冲器进行编码调制,通过光
功率放大器(如EDFA)对传输过程中信号能力衰耗进行补偿、并在光纤中进行传输,光纤中的非线性效应抵消色散的脉冲展宽,使光孤子信号在长距离光纤稳定传输。
'*LN)E>d LG@c)H74 2.仿真步骤
LOb'<R\p 图1所示为光路图。
ga1gd~a l^eNZ3:H 图1.光路布局
8|-mzb& 图2是用于实现10 Gb/s传输的全局
参数。
6`5
@E\"E t ]I(98pY 图2.全局参数设置 :
$52Ds!i
图3为脉冲参数。
^B6i6]Pd=9 2p;}wYt 图3 脉冲参数设置
R#Nd|f< 我们设定:
Nec(^|[ 比特速率 B= 10 Gb/s → TB = 100 ps.
~:b:_ 5" 序列长度 16 bits
r dG2| Tp 脉冲波长 λ= 1300 nm
LX?r=_\ TFWHM = 20 ps —> To = 0.567 TFWHM =11.34 ps
(7jB_ p% 输入峰值功率 21.7 mW
, ZP3F+XKb g(Xg%&@KZ 图4和图5显示了非线性色散光纤的参数。
Py25k 0j! 图4.非线性色散光纤的Main参数
{LJ6't 8y: 图5.非线性色散光纤的Dispersion参数
jnKM6%z 我们将设定长度为50 km、损耗为0.4 dB/km的SMF。
3w:Z4]J tDLk ZCP 注:不考虑群延迟和三阶色散的影响。
v7OV;ea$ 在每条光纤之后,信号用EDFA进行放大。因此,LA=50 km。满足条件LA<LD(见图6)。
\NQ)Po@z
2:5gMt 图6.非线性色散光纤的Nonlinearities参数 *=If1qZs
对于Kerr非线性系数γ=n2ω0/cAeff,非线性折射率n2=2.6×10-20[m2/W].
%FI6\|`M
8OtUY}R 50 km SMF的线性损耗为20 dB,损耗用增益为20dB的理想EDFA进行周期性补偿。
'%RK KA 该SMF的光孤子峰值功率为5.8mW。平均光孤子的输入功率为27.1mW。为了证明平均光孤子输入功率的重要性,我们将考虑具有两个不同输入功率的500km SMF中的光孤子传播:
56
kgL;$h ——5.8 mW——光孤子峰值功率(功率不足)
e%c5OZ3~ ——27.1mW——考虑周期性放大的光孤子峰值功率(平均光孤子)
~$ qJw?r
对循环数量0、4、7和10进行扫描,用这些循环来表示SMF中的传播距离0、200、350和500km。
N[bf.5T -r'seb5 3.仿真结果
KJJb^6P48W 图7显示了脉冲的初始模式,以及在SMF中传输200、350和500km后的相同脉冲模式。每50km用EDFA进行周期性放大,27.1mW的光孤子峰值功率。
Y&