本文建立了楔形LCD背
光源模型,并对其进行分析,并按照
照明输出标准对其进行
优化。
4Sq[I :@H&v%h(u 简介
:"pA0oB 液晶显示器 (LCDs) 作为一种显示技术,在当今社会中已经得到了广泛的应用。在商业领域中最突出的应用包括计算机显示器、移动电话、电视和手持数字设备。
kkz{;OW
+U:U/c5Z^ 当环境光照条件不足时,大多数LCD都是接收后方照明以提供光照的。采用的两种照明方案为:底部照明和边缘照明,OpticStudio能够对这两种照明方案进行建模,且边缘照明方案中存在更复杂的设计问题,本文将重点对此进行介绍。
3~mi {d%% nK~ LCD 照明方案
`qnNEJL, DnZkZ;E/ LCD底部照明方案使用阵列光源,如发光二极管,或均匀光源(如放置在LCD后面的电致发光面板)。此方案具有良好的均匀性和亮度,但需要更多的能量和更厚的保护壳。
y]veqa <+tSTc4>r *C*'J7 本文的重点内容是边缘照明设计,使用楔形导光板对放置于LCD显示器旁边的光源发出的光进行分布。与底部照明方案相比,此方案消耗的能量更少,且封装更薄,但是均匀性和亮度较差。
yG`J3++
S Rz Os, :E>"z6H 本文中忽略实际的液晶层,只考虑
背光源设计。
s?irT;= #9a\Ab 建立背光源模型
[]v t\I
; Pr%Y!| 边缘照明LCD的详细布局图如下图所示:
TBGN',, ey~5DY7 $@[`v0y* 光源通常是冷阴极荧光灯管 (CCFL) 或一系列发光二极管 (
LED) ,且在光源的后面放置反射器可以提高
系统的效率。楔形光波导利用全内反射 (TIR) 使光更均匀地分布在显示区域。用反射镜围绕光波导,也可以提高系统效率。使用不同增亮膜 (BEF) 的阵列模式,可用于控制发射光的发光强度和偏振特性。
_shoh S{q c1qj 在此设计案例中假设一些约束条件:将基于标准的移动电话选择显示屏的面积,并根据整体封装高度的限制选择光波导厚度。
4NY}=e5 |\lsTY&2 显示区域面积:75 mm x 75 mm
8)wxc1 / mM# nS 楔形板厚度:输入面 4 mm ,端面 1 mm
j!It1B /5l"rni BEF:Vikuiti™ T-BEF 90/24
J*n Q(*e $hn=MOMc 下载本文附件,将
玻璃库放在{Zemax}\Glasscat目录中。这个
材料库包含了改性丙烯酸和PMMA,可用来
模拟这些塑料的内部近似传输值 (93%超过25毫米) 。基本设计和
参数在“Starting Point.zmx” 文件中定义。请留意非序列元件编辑器 (Non-Sequential Component Editor,NSCE) 中用于建模不同背光元件的光源/物体类型。
xE2sb* /s'7[bSv _>G. 当被激发的电子撞击阴极管表面的涂层材料时,冷阴极荧光灯管发光。使用“管光源”对此类光源发射方式而言是非常理想。可以通过交替使用“二极管光源”来模拟一维二极管阵列作为光源。
u?J!3ZEtb r\+0J` 使用由丙烯酸材料制成的矩形体物体建立楔形光波导模型。该物体可以存在不同的端面尺寸和倾斜。请注意,只有倾斜物体才能保持光波导的上表面与X-Z平面平行。由于物体是围绕光波导输入面的中心旋转,而不是顶部边缘,所以Y的位置也需要略做改变。在物体倾斜的前后表面上都设置拾取 (Pickup) 求解以确保他们与Y-Z平面保持平行。
]r^/:M /*zngp@ CTG:C5OK BEF是系统中最复杂的元件。手动复制父棱镜将非常耗时,且在
光线追迹时需要大量内存。可以用阵列物体来替代复制棱镜,因为它只需要与父物体相同的内存,并且可以通过调整父物体的参数来改变整个阵列。同时,请注意存在阵列时的光线追迹速度,即使它内部仅仅含有几何物体。
DxFmsjX[L e#+u8 LrN 确定初始性能
P0B`H7D =Ts3O0"[ 现在已经搭建了基本系统,接下来查看其初始性能。通常用于确定设计优劣的标准是能量传递效率和均匀性(照度和发光强度)。能量传递效率的定义是显示器发出的能量与光源发出的能量之比。在空间位置中,期望整个显示器上的输出是均匀一致的(每像素最小通量的偏差)。在角度空间中,输出在(~30度)半锥角内应该均匀。请注意,此系统是为小型数字设备所设计的。如果此设计要用于电视或电脑显示器,则需要更大的半锥角(~90度)。
)tq&l>0h ,u:J"epM 使用下图所示的光线追迹控件 (Ray Trace Control) 进行光线追迹的相关设置,并注意阈值造成的能量损失。
~6)A/]6 nD8 Qeem@ Qcy
/)4Hfg 查看探测器查看器,可以看到大约40%的光源能量到达探测器;由于蒙特卡罗 (Monte Carlo) 光线追迹的随机性,这个值可能会变化几个百分点。光线错误会导致一些能量损失,但在此应用场景中这是无关紧要的。大部分的能量损失是由于光波导中的体吸收造成的,且近10%的能量损失是由于阈值,这在光线要经过多次反射的系统中很常见。如果能量损失很大,可以通过将最小相对光线强度降低几个数量级来消除这种能量损失,但它会明显地减慢光线追迹的速度。将阈值降低到1E-6可以将能量损失降低到1%,并将效率提高到46%左右。
;yvx - -&Cb^$.-x ]d4`PXI 查看照度和发光强度的分布。光源对面的显示屏照度最高,这是由于光波导造成入射角变大,使TIR更接近光源造成的。发光强度图上显示了几个峰值,而不是在较小角度内具有理想的均匀分布。可以看出,这种强度分布是楔形光波导和BEF的特点。
y*BS
%xTF [eb?Fd~WB] +PlA#DZu 根据目前的定义,系统中几乎没有几何参数可以修正这些分布。最有效的方法是在楔形光波导中引入散射特性。并且,输入面、顶面和底面对照度和发光强度分布的影响最大。
j.?c~Fh '@ $L}C#OI 使用以下设置将朗伯散射配置文件应用于光波导的输入面。
1[;
7Ay V>$A\AWw Ap:mc: 进行光线追迹并观察输出特性的差异。确保在光线追迹控件对话框选中“散射光线 (Scatter Rays)”!
-kGwbV} MsaD@JY.y @%oHt*u 该系统的效率提高了几个百分点,照明均匀性得到了很大的改善。发光强度略有改善,但仍存在一些重要问题有待解决。
R">-h;# _uYidtxo= 现在,从光波导的前表面移除散射配置文件,并应用到顶面。默认情况下,使用三个面组定义矩形体,因此不能仅将顶面或底面设置为漫反射板。取而代之,将放置与顶面一致的散射矩形体并为该表面添加散射配置文件。如果该物体与非序列元件编辑器中的矩形体相同,则嵌套规则将使界面中的新物体处于优先地位。在物体7处插入矩形体物体,该矩形体的参数如下:
qM$4c7'4P6 B"@3Q av3 Y-坐标 = 2
)g()b"Z
#> Yq$KYB j Z-坐标 = 38.5
2ncD,@ij ^Uj\s / X-倾斜 = -90
_5t~g_(1OK uPmK:9]3R 材料:空白(空气)
yobcAV` :aIS>6 X1、 X2、Y1、 Y2 半宽 = 37.5
RjcU0$Hi u/I|<NAC, Z 长度 = 0.01
ccdP}|9e Z7="on4 朗伯散射配置文件:只用于前表面
^n @dC? ]FQO@y 保留其他参数的默认值。运行光线追迹并记录输出的变化。
Xxz_h* +E7Os|m <T3 v|\6~H 照度均匀性下降,但是影响光照强度的重点问题得到解决,效率也大大提高了。从结果中发现:需要在输出的空间分布和角分布的均匀性之间做出权衡;如果在底面使用相似的散射函数会使效率降低。
`X:o]t@ $+P6R`K 根据结果显示,理想的散射配置文件应该用于光波导的顶面上,使得在光源附近的光线散射较少,而在相反方向的光散射较多。阵列物体能够对非线性图样进行建模。
(uxe<'Co| )'+
tb\g 优化背光源
x$:P;# 7 K5D,"D;1 目前在楔形光波导中最常用的微观结构制造方式是模压拉伸/挤出,其优点是不需要额外的处理步骤,比如在光波导上打印散射点。本设计将每个微观结构都做成球形,尽管其他任何物体(本地、导入、布尔等物体)也都可以使用。这是通过将球体阵列放置在光波导的上表面上实现的。通过在非序列元件编辑器中将这些物体放置在光波导之后,并将它们的材料定义为空气,其效果是在光波导上浮雕出球体(注意嵌套规则)。将父球体和阵列物体添加到“ Mid Point..zmx ”中(此文件在本文的附件中)。
y^*o%2/ P<tHqN!q 打开文件时,注意阵列物体12的画图极限参数设置得非常低,是因为阵列中有大量的元素,绘制所有元素需要大量时间。取而代之的是OpticStudio在整个阵列周围绘制了包围框。
_x2i=SFo*$ 5Al1u|;HB 通过优化阵列参数以达到上述的最佳性能标准。所需的优化函数已经在当前文件中定义,打开评价函数编辑器如下图所示:
X0}+X'3 *\n-yx] |#Gug(' 用操作数5和8分别用于最大化空间均匀性和总光通量,用操作数10和11来控制光强分布的质心,用操作数13用来控制光强分布的均方根半径。希望输出光线不是完全平行的,而是限制在一定的视角范围内,因此,指定了30°作为目标视角。最后一组操作数 (15-18) 是边界约束,以防止阵列变得太大或太小,当无边界约束时,优化会有产生极限解的趋势。注意这些操作数的负数权重,它们就像拉格朗日乘数一样工作,迫使目标得以实现。
Sb/`a~q^ fK0VFN8<I 优化分配的变量如下:
*K57($F ~fht [S?@M 球面物体:半径
Ik\n/EE xsO
"H8 阵列物体:Number X’ & Y’, Delta1 X’ & Y’, Delta2 Y’
&c|3v! xnR;#Yc 由于对称性的考虑,阵列只需要在y方向上是非线性的。因此只在X方向上分配线性阵列的间距 (Delta1 X ') 。此外,优化时很可能不需要阵列的三阶和四阶参数可变,所以不将其设为变量。
>, 9R :X( _<8~CWo: 如果给变量一个有限初始值,而不是从零开始,通常会使优化更有效。为了确定二阶y方向的起始点,查看通用绘图并与评价函数中的值进行对比。打开一维通用图(分析 (Analysis) >通用绘图 (Universal Plot))并应用以下设置。
Qvx[F:#Tk -5 Q
gJ f i_'Ny># 点击OK键,并进行绘图更新;这个过程可能需要几分钟,具体所需时长取决于电脑的速度。根据下图,将阵列物体上的“ Delta2 Y ”参数设置为5E-3。
t++
a C3]"y7 B1U<m=Y 背光源设计形式是固定的,只需要优化阵列参数。考虑到这一事实,使用正交下降 (OD) 算法进行锤形优化对于达到目标非常有效。锤形优化在长时间运行时性能最好,完成之后可以确定没有与起点相似的更好的设计。在运行锤形优化约20小时后,OpticStudio得出了具有良好空间均匀性和可接受的发光强度的解。请注意,此种发光强度是此类光波导的特性,不可能在不大幅度改变设计参数的情况下产生显著变化。优化后的系统见附件:“End Point.zmx”。
(v)/h>vS }Z,x F` Fcz}Gs4 还要注意,系统效率已经上升到大约60%。如果降低最小相对光线强度阈值,得到的效率接近62%。有可能可以通过在系统中再添加散射和/或膜层属性进一步提升其性能。