清华大学提出超分辨轨道角动量全息技术
全息技术能够完整记录和再现光场的波前信息,在三维显示、数据存储、光学加密等领域发挥了至关重要的作用。例如,全息三维显示技术无需佩戴设备、不易引起视觉疲劳,被认为是虚拟现实(VR)/增强现实(AR)近眼显示、智能车载抬头显示(HUD)等应用的终极解决方案。但是,传统全息图只能记录一幅图像,难以实现动态立体显示。 与之相比,新兴的轨道角动量(OAM)全息技术利用OAM自由度,开辟了宽广的信息存储空间。类似于电影的胶片,数百帧图像可记录在同一张OAM复用全息图中,其中每帧图像只对应特定的OAM阶数,相当于被赋予了一个专属密码;通过不同阶OAM光束依次照射全息图,实现三维影像的动态刷新,理论上可大幅提升全息技术的信息容量和安全性。 然而,OAM全息图的大容量与高分辨率是一对矛盾。由于全息图的各OAM通道之间存在强烈串扰,为了确保每个像素位置的OAM性质不被破坏,必须对原始图像进行稀疏采样(图1a)——严格要求采样间隔(L)不小于最高阶OAM模式的直径(dmax),即γ=dmax/L≤1。γ=1即对应目前OAM全息技术的分辨率上限,如图1b的蓝色曲线所示,随着复用通道数量增多(dmax增大),图像分辨率损失严重(L同比例增大)。该瓶颈问题极大限制了OAM全息技术的容量和分辨率的提升空间。 图1.OAM全息技术中分辨率与复用通道数量的矛盾 图2.OAM全息技术的复用串扰来源及抑制方法示意图 针对以上难题,清华大学精仪系先进激光技术团队建立了OAM全息复用串扰的综合分析模型,提出了几乎无串扰的伪非相干方法,并通过时分复用技术实现了近似的相干方法。新技术放宽了对OAM全息采样条件的限制(γ可增大数倍,如图1b的红色、紫色曲线所示),突破了现有OAM全息技术的分辨率上限,显著提升了重建图像的分辨率(相同复用通道数量下)和复用容量(相同分辨率下)。工作原理如图2所阐释:现有OAM全息技术对应于图2a的普通相干方法,当γ>1时,重建图像中的OAM特性被完全破坏,引起强烈的复用串扰;图2b的非相干方法虽然能够抑制复用串扰,但由于时域/空域色散,重建图像会变模糊;图2c和图2d分别为本工作提出的伪非相干方法、时分复用相干方法,使重建图像始终保持OAM特性,即使在超分辨情况下仍能获得高质量重建。 基于50张二值OAM全息图的时分复用,本工作展示了2倍超分辨条件下(γ=2)5幅灰度图像的OAM复用(图3)、4.7倍超分辨条件下(γ=4.7)201帧视频的OAM复用(图4)、9.2倍超分辨条件下(γ=9.2)81幅二值图像的OAM复用(图5),均表现出优于复振幅OAM全息、相位型OAM全息方法的重建质量。 |