光纤放大器的
教程包含以下十个部分:
gx8ouOh 1、光纤中的稀土离子
r6MMCJ|G 2、增益和泵浦吸收
7uS~MW 3、稳态的自洽解
RXpw! 4、放大的自发发射
mzaWST] 5、正向和反向泵浦
hz;G$cuEE 6、用于大功率操作的双包层光纤
J6s`'gFns 7、纳秒脉冲光纤放大器
:0j?oY~e 8、超短脉冲光纤放大器
z0p*Z& 9、光纤放大器噪声
/ivJsPH 10、多级光纤放大器
hl7bzKO*w 接下来是Paschotta 博士关于光纤放大器教程的第2部分:
pMx*F@&nU uGf@ 在第 1 部分中,我们已经看到如何根据给定的光强度计算
激光活性离子的激发密度。从这些,我们很容易得到局部增益系数。如果激光跃迁在 1 级和 2 级之间,则增益系数(以 1/m 为单位)为
h5{'Q$Erl 其中z是纵向位置,N dop是光纤纤芯中激光活性离子的掺杂浓度,而ξ ( λ )是重叠因子,考虑到部分光在纤芯外传播,因此不会“看到” 兴 奋 剂。注意带负号的术语,考虑到信号的重吸收。重吸收效应在激发密度低的位置尤为重要;净收益甚至可以变为负数。即使在光纤放大器的强激发部分,它也常常非常相关。
<CYd+! ( 我们可以将相同类型的方程应用于泵浦波。在那里,由于吸收项占主导地位,增益将变为负值——泵浦波因吸收而衰减。
L%*!`TN 假设给定z位置的核心内泵浦强度恒定,上面的等式稍微简化了。为了概括这一点,必须在掺杂区域的区域上插入积分。这样的版本将允许场强和掺杂浓度的任意横向变化。合适的仿真
软件会考虑这些因素。
3nIU1e 为了考虑光纤的寄生传播损耗,也可以在上面的等式中加入一个负数。然而,在放大器的小长度中,这些通常很弱。
Sz)' ogl 一个不错的方面是,如果光纤是单模光纤,则泵浦光和信号光的空间分布是固定的,除了由于吸收、增益和可能的寄生功率损耗引起的功率纵向演变。所以我们只需要计算光功率是如何演变的,而通常不必进行全面的数值
光束传播(使用波前等)。即使在多模光纤中,人们也经常绕过这一点。
SIF/-{i(X J{p1|+h% 示例:掺铒磷酸盐玻璃纤维
+qtJaYf/0 例如,考虑掺铒的磷酸盐玻璃。图 1 显示了其在 1.5-μm
光谱区域中的有效过渡截面。
zU kgG61 图 1:铒离子在 Er:Yb 掺杂的磷酸盐玻璃 中的吸收和发射截面,数据来自 S. Konkanen 等人,Proc。SPIE 2996, 32 (1997)。
"/*\1v9 由此我们可以根据上式计算不同激励电平的有效增益系数:
UUYSFa% 图 2: 图 1 中数据的有效增益,激励程度从 0 到 100%,步长为 10%。
xjuN- 对于基态(最低
曲线),我们在所有
波长都有吸收(负增益)。例如,在铒离子激发 50% 时(中间曲线),我们在 1550 nm 区域获得了一些增益,而在 1500 nm 处仍有净吸收;然而,这种吸收现在比基态要弱得多。在 80% 的激发下,1550 nm 区域,特别是 1535 nm 附近的净增益变得相当高,现在即使在 1500 nm 也有一些增益。这意味着用 1500 nm 泵浦不可能达到如此高的激发能级。它需要更短的泵浦波长以减少泵浦波的受激发射。实际上只能通过泵入液位歧管 3 ( ⁴ | 11/2) 波长约为 980 nm。不幸的是,由于高
量子缺陷,泵浦的功率效率更差。
xaq-.IQAM$ 图 2 显示,更强的激发能级不仅提供更多增益,而且会改变增益谱的形状。这是光纤放大器的典型现象。
}{K)
4M c@!_/0 示例:掺镱锗硅纤维
Z58X5" 对于掺镱器件,我们得到了一些类似的行为,只是一切都发生在 1 μm 左右的波长范围内。图 3 显示了锗硅玻璃(主要用于掺镱光纤放大器)中镱 (Yb 3+ ) 离子的跃迁截面:
67JA=,EE 图 3: 掺镱锗硅酸盐玻璃的吸收和发射截面,用于掺镱光纤的纤芯。(R. Paschotta 的光谱测量数据)
Yh@JXJ> 我们可以再次计算有效增益:
k2omJ$?v 图 4: 图 3 中数据的有效增益,激励程度从 0 到 100%,步长为 10%。
由于在 975 nm 处有很强的吸收和发射峰,即所谓的零声子线,其行为有所不同,但总体上仍与铒的情况相似:
6@h/*WElG • 对于小镱激发,我们首先在长波长区域获得增益。如果它进一步增加,我们也会在 1030
纳米区域获得增益,在那里它可以变得更强。
=\&;Fi] • 只有当达到 ≈50% 时,975 nm 处的强吸收才会饱和,在此之上,我们会在那里获得强吸收。这意味着对于 975 nm 的高泵浦强度,激发变为 ≈50%。强度大致相同的强吸收和受激发射相互补偿。
6"LcJ%o • 在 920 nm 这样的短波长下,几乎没有任何受激发射,因此泵浦光可以被吸收,甚至超过 90% 的激发。
-j#2}[J7 1y4|{7bb 准三级特性
)0.kv2o. 在这两种情况下——铒和镱——我们观察到明显的准三能级行为,特别是对于短信号波长:在没有泵浦的情况下,由于信号光的重吸收,光纤会提供损耗(即负增益),并且只有在泵浦功率的某个值以上才能获得正增益。(对于较长的信号波长,再吸收效应会变弱。)这种行为对于光纤放大器来说是典型的,因为它们中的大多数都在较低激光能级是基态流形的跃迁上工作,或者更准确地说,它的较高亚能级. 一个值得注意的例外是在 1050-nm 或 1.3-μm 区域内以四级跃迁运行的掺钕放大器。这些不表现出信号重吸收(仅相当低的寄生损耗),并且可以为非常低的泵浦功率水平提供一些正增益。
b$d;Qx 到目前为止,我们只讨论了光纤中的局部增益。光纤放大器的整体增益将在下一部分中讨论。