-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-02-21
- 在线时间1734小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 M$&>5n7 Rrqg[F + 成像示意图 $3\yf?m}q 首先我们建立十字元件命名为Target x0Bw{>Q XT||M)# 创建方法: ; Zq/eiB WD?Jk9_F 面1 : YBSl-G' 面型:plane MEU[%hty_ 材料:Air |f NMs 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Hq
xK\m%,. Fh`-(,e?5 ~b8a^6:R" 辅助数据: A8dI:E+$ 首先在第一行输入temperature :300K, SFO&=P:U emissivity:0.1; _+zVpZ (fXq<GXAn/ T"W9YpZ 面2 : yDtOpM8<{ 面型:plane 6An{3" 材料:Air QHQj/)J8 孔径:X=1.5, Y=6,Z=0.075,形状选择Box V.,bwPb{9 97x%w]kV /2h][zrZ[. 位置坐标:绕Z轴旋转90度, 5\G)Q<A]*L %c1FwAC !0dX@V'r 辅助数据: k!13=Gh T}2:.Hk:N 首先在第一行输入temperature :300K,emissivity: 0.1; NW De-<fQ nW&$~d ve%l({ Target 元件距离坐标原点-161mm; T~:_}J I*c;hfu Mdky^;qq3; 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Ej|A
; &E b"P&+c #HDesen 探测器参数设定: RHXvee55 ~R{8.!: > 在菜单栏中选择Create/Element Primitive /plane )G4rJ~#@ oeGS
qT0_L (j=DD6fC .Qk{5=l6P O0zi@2m?B 元件半径为20mm*20,mm,距离坐标原点200mm。 x@ 6\Ob %1Jd^[W 光源创建: k.{G&]r{ O*4gV }:G 光源类型选择为任意平面,光源半角设定为15度。 =~$U^IsWA iUCwKpb9 *2#FRA#q 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 FpC~1Nau r\bq[9dX> 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 <O
bH f`Q %/md"S Fd}<Uote3 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 X?kPi&ru :o<N!*pT 创建分析面: rr)9Y][l} 'ucGt 776 nWw) 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 cUNGo%Y 'XEK&Yi1 /evaTQPz 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Es~DHX 2|
$k`I, FRED在探测器上穿过多个像素点迭代来创建热图 [[&)cbv _&K\D
p&@ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 bCt_yR 将如下的代码放置在树形文件夹 Embedded Scripts, G ;jF9i 5{HtJ?sKc5 j^rYFS
w:Q 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 p/4S$
j#Tn \ bC}&Iz6 绿色字体为说明文字, |9x%gUm pNBa.4z: '#Language "WWB-COM" Q{8qm<0g 'script for calculating thermal image map !HvGlj@(| 'edited rnp 4 november 2005 OAY8,C=M 8 `o{b"l+ 'declarations z6Fun Dim op As T_OPERATION phe"JNML Dim trm As T_TRIMVOLUME B6(h7~0(< Dim irrad(32,32) As Double 'make consistent with sampling GPMrs)J*! Dim temp As Double 17|@f Dim emiss As Double `)LIVi"(D Dim fname As String, fullfilepath As String ?C
FS}v /!:L7@BZ 'Option Explicit :mzCeX8 * 4@ =
aa Sub Main 9y;y7i{>? 'USER INPUTS BQE{ nx = 31 zU=YNrn ny = 31 Q;=6ag' numRays = 1000 ofVEao minWave = 7 'microns nD(w @c? maxWave = 11 'microns 5Zzr5WM sigma = 5.67e-14 'watts/mm^2/deg k^4 l&vm[3 fname = "teapotimage.dat" (/('nY a4Ls^ Print "" S_ZLTcq<1 Print "THERMAL IMAGE CALCULATION" o; 6fvn 0T 1HQ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 }7-7t{G 56"#Syj Print "found detector array at node " & detnode fm[_@L%
x VjC*(6<Gj srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 4t,zHR6W Nvi Fq Print "found differential detector area at node " & srcnode 0`V3s]%iu @< wYT$ GetTrimVolume detnode, trm xq#U4E detx = trm.xSemiApe
{VS''Lv dety = trm.ySemiApe B:B8"ODV area = 4 * detx * dety Gv!BB=ir( Print "detector array semiaperture dimensions are " & detx & " by " & dety "w(N62z/ Print "sampling is " & nx & " by " & ny #Tup]czO _{[k[] 'reset differential detector area dimensions to be consistent with sampling XulaPq pixelx = 2 * detx / nx iTj"lA pixely = 2 * dety / ny ,}eRnl\ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False R5m`;hF Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 )>-77\ x-w`KFS 'reset the source power Lhl$w'r SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) : =
]sq}IN Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" [`y:M&@ i<B: 'zero out irradiance array V"w`! For i = 0 To ny - 1 $&ex\_W For j = 0 To nx - 1
#;5[('&[ irrad(i,j) = 0.0 IXbdS9,>F Next j nYI/&B{p Next i 4 *Bp (45NZBs 'main loop NFrNm'v EnableTextPrinting( False ) 9@$tiDV fBHkLRFH ypos = dety + pixely / 2 83{x"G3> For i = 0 To ny - 1 ,`ZPtnH+ xpos = -detx - pixelx / 2 MV
Hz$hyB ypos = ypos - pixely y%{*uH}SL Y&oP>n! ei EnableTextPrinting( True ) R59e&
Print i H.jLGe> EnableTextPrinting( False ) }2-[Ki yv &:;/]cwj [z
W_%O kP For j = 0 To nx - 1 mXxZM;P[ LFk5rv'sM0 xpos = xpos + pixelx E9L!O.Q )ZS:gD 'shift source gi1}5DR LockOperationUpdates srcnode, True &(5^vw<0 GetOperation srcnode, 1, op |#DC.Ga! op.val1 = xpos Y|hzF:ll op.val2 = ypos nU=f<]S= SetOperation srcnode, 1, op n;-x!Gs LockOperationUpdates srcnode, False r~S!<9f W
/~||s raytrace OvyB<r DeleteRays c7FfI"7HR CreateSource srcnode R-g>W TraceExisting 'draw LV}UBao5n X";QA": 'radiometry k7z(Gbzu For k = 0 To GetEntityCount()-1 "-0pz\a If IsSurface( k ) Then Ff)~clIK ' temp = AuxDataGetData( k, "temperature" ) N}8HK^n* emiss = AuxDataGetData( k, "emissivity" ) *eJhd w* If ( temp <> 0 And emiss <> 0 ) Then q3,P|&T ProjSolidAngleByPi = GetSurfIncidentPower( k ) 5~`|)~FA frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) +XU$GSw3( irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi RT.wTJS; End If '_TJ"lOZ *@\?}cX End If yS:IRI. 8I5 VrT Next k 7$q2v=tH_ R`I8Ud4= Next j E]HND.`*> X]+(c_i:hC Next i buq *abON EnableTextPrinting( True ) ^'C,WZt Y\z^\k 'write out file VurP1@e& fullfilepath = CurDir() & "\" & fname >,]
eL Open fullfilepath For Output As #1 yZj}EBa Print #1, "GRID " & nx & " " & ny +eV4g2w) Print #1, "1e+308" ?c=R"Yg$ Print #1, pixelx & " " & pixely "lv:hz Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 &9RW9u " 0%A(dJA6 maxRow = nx - 1 j(@g
maxCol = ny - 1 *uI hxMX For rowNum = 0 To maxRow ' begin loop over rows (constant X) ^B&ahk row = "" t[f9Z For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 1,%#O;ya row = row & irrad(colNum,rowNum) & " " ' append column data to row string @MlU!oR& Next colNum ' end loop over columns (IoPU+1b 7tf81*e Print #1, row Dj,+t+| =}%#$ Next rowNum ' end loop over rows Y1Gg (z Close #1 zP{<0o ^?K?\ Print "File written: " & fullfilepath TY54e T Print "All done!!" _ RT"1"r End Sub 'sjJSc {P<BJ52= 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 764}yV> @T,H.#bL ~ ];6hxv 找到Tools工具,点击Open plot files in 3D chart并找到该文件 "j.oR}s9?# .Kh(F6
s H(%] Os 打开后,选择二维平面图: }VGI Y>v '^-4{Y^2E
|