摘 要:白光有机发光二极管( WOLED )被认为是传统白色光源的替代光源。它们是高效的固态光源,电光转换效率已经超过白炽灯, _]q%H ve
E
As1
=
最近在器件结构、新材料的合成等方面取得了很大进步。这里对从有机发光二极管( OLED )到获得白光有机发光二极管的方法、它们的优势、缺点及其近期的进展进行简单的介绍,对器件结构及其相关的器件设计存在的问题也进行了讨论。 whb,2=gIE
F2WMts
1、导言 p5?8E$VHV
NWt5)xl
全世界每年都消耗巨大数量的电能。在全部的电能消费中,照明用电能占到了总电能产量的 20% 。荧光灯和白炽灯是使用最普遍的传统照明光源,照明用电能的 40% 被它们消耗掉了。白炽灯把 90% 的电能变成了热能,荧光灯的表现好些,它把消耗掉的电能的 70% 转换成了光能。白炽灯和荧光灯的典型发光效率分别是 13-20lm/W 和 90lm/W [1] 。所以为了节省世界上的能源,一个办法就是找到传统光源的替代品。研究者们花了十多年时间研究具有更好的表现的半导体发光二极管。市场上早已经出现了由无机材料制作的红、绿、蓝及其其他颜色的发光二极管,它们广泛应用在交通信号灯、汽车尾灯及其其他一些小的应用当中。无机白光发光二极管也已经出现在市场上,不过它们的价格相对普通照明使用来说,还是比较高昂的。现在照明光源的一个新的竞争对手也已经来到了市场上,它就是基于有机半导体材料的发光二极管。 )sBbmct_S
ZB5u\NpcW
在过去的十年中, OLED 在显示技术领域显示出了可以与液晶相比的强大的竞争力。自从 1987 年在 tris (8-hydroxyquinoline) aluminium (Alq3)[2] 和 1990 年在 poly(p-phenylene vinylene) (PPV)[3] 中发现高效的电致发光以来, OLED 成为了最吸引人的显示技术。它具有制备简单、响应时间短、高亮度、宽视角、低驱动电压、最有可能应用到柔性衬底上和全彩显示等优点。 OLED 显示具有耐用、高效、可以制备到柔性衬底上的优点,例如塑料和纸张的表面,制备出的显示屏可以被弯曲或卷起。与液晶不同的是, OLED是自发光,无需背光,这使 OLED 显示屏可以做的更薄和更轻便。 C#@>osC
Y>a2w zr
OLED是多层膜器件,它由夹在两个薄膜电极中间的活性电荷传输层和发光层组成,其中至少有一个电极是透明的。一般来说,具有高功函( ~4.8eV )、低面电阻( ~20 Ω / □ )并且对可见光透明的氧化铟锡( ITO )被用来作为阳极,阴极一般采用低功函的金属,例如 Ca 、 Ma 、 Al 或它们的合金 Ma:Ag 、 Li:Al 。一个具有好的电子传输性能和空穴阻挡性能的有机层被放在阴极和发光层之间。同样地,空穴传输层和电子阻挡层被用在阳极和发光层中间。当外部被加上偏压时,电子和空穴分别从 OLED 的阴极和阳极注入。在外部电场的作用下,电子和空穴向相对的方向迁移,在发光区复合形成激子,激子衰减向外辐射出光。激子的迁移动力学和性质在这里不做讨论。 IKVS7m
yr,Oq~e
白光OLED技术由于在通用固态照明和在平板显示作为液晶背光源中的应用,吸引了相当多的关注。在全彩显示的制备中,三基色是同等重要的,但是白光发射获得了更多的关注是因为任何想得到的色彩范围都可以通过过滤白光来得到。第一个白光 OLED 器件在 1993 年由 Kido 和他的同事制备出来。这个器件包含可以发红、绿、蓝三种光的化合物,共同产生白光。但是这也同时存在一些问题。器件的效率低于 1lm/W ,器件需要大的驱动电压,而且很快就被烧掉了。但是现在这些器件的效率提高的很快。每年在传统 LED 、氮化物 LED 、白光 OLED 中效率的进步如图1所示。 8B"my\ 图1 发光二极管效率进步年度表
|:G`f8q9 2、OLED激发白光的途径
u(b Pdf@kz GJP\vsaQ 照明用白光应该具有好的显色指数(> 75 )和好的色坐标位置(接近国际照明协会的色品图的( 0.33, 0.33 )点)。从 OLED 中产生白光大致可以分为以下两种途径。
YdiXj |k+ [&H?--I (a)波长转换 从 OLED 中发出的蓝光或紫外光被用来激发几种磷光材料,每种材料发出的不同颜色的光混合到一起,就可以得到具有丰富波长范围的白光。这个技术被成为磷光的下转换。
QoTjKck. \r^*4P,, (b)颜色混合 这种方法是在一个器件中使用多个发光层,利用不同发光层发出的不同颜色的光混合,产生白光。白光可以通过混合 2 种互补色(蓝色和橙色)或三基色(红、绿、蓝)来得到。典型的通过多层结构来产生多种颜色的光,各种颜色混合起来得到白光的方法主要有 (a) 包含红、绿、蓝发光层的多层结构 (b) F¨orster / Dexter 能量转换
6S6E
1~ (c) 微腔结构 (d) 通过垂直 / 水平的叠层结构来获得白光 (e) 不同发光材料混合或掺杂成为一个混合层。在颜色混合技术中,由于没有磷光材料的使用,因此,由波长转换引起的损失不会发生,这种技术具有获得更高效率的潜力。下面对各种方法详细讨论。
>^(Q4eU7! O}cg1Q8p 获得好的质量的白光不需要取得突破,但是获得稳定的白光仍旧是一个研究和发展的热点。
g4CdzN~ Yt#e[CYnu 2.1 颜色混合
r5(-c]E7 <h<4R Rj 2.1.1 多层膜器件结构:这种获得白光的方法是利用同时在两种或更多种发光层中发出的光进行混合,来得到白光。这种技术建立在连续沉积或不同材料的共蒸发和激子复合区的控制的基础上。这种结构中包含了许多有机 - 无机界面,界面处的能垒增加了载流子的注入难度,并且产生焦耳热。因此为了减小有机 - 无机界面处的电荷注入能垒和焦耳热,发光材料的选择原则是邻近的发光材料的最高被占用分子轨道和分子最低空余轨道需要相互匹配。器件的发光依赖于每个层的成分和膜厚,需要对发光层的成分和膜厚进行精确控制才能使颜色平衡。激子的复合区通过在空穴传输层和电子传输层中间加入仅对一种载流子具有阻挡作用的阻挡层来进行控制。以便复合区发生在两种或三种不同的发光层中。这样做的结果是在不同的发光层中都发出光(图2)。
UCDvN 图2 多层白光OLED结构示意图
通过控制在不同有机层中的复合电流,来使得从红、绿、蓝发光层中发出的光取得平衡,得到想要得到的纯度的白光。 Deshpande 等人 [4] 通过在不同 层中进行连续的能级转换来得到白光。制作的器件结构为 ITO /α -NPD /α NPD:DCM2(0.6–8 wt%) / BCP / Alq3 / Mg:Ag(20:1) / Ag 。这里 4,4_ bis[N-(1-napthyl-N-phenyl-amino)]biphenyl ( α NPD) 被用来作为空穴注入层。 α NPD: DCM2 (2, 4-(dicyanomethylene)-2-methyl-6-[2-(2, 3, 6, 7-tetrahydro-1H, 5H benzo[I,j]quinolizin-8-yl)vinyl]-4H-pyran) 被用来作为空穴传输层和发光层,沉积 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) 层的目的是用来阻挡空穴, Alq3 作为绿光发光层和电子传输层, Mg:Ag 合金及其接下来的厚 Ag 层用来作为阳极。这个器件报道的最大亮度是 13500cd m -2 ,最大的外量子效率大于 0.5% ,发光效率为 0.3lm /W 。最近 Wu 等人 [5] 报道了一个具有双发光层的 OLED 器件,并且器件对使用阻挡层和不使用阻挡层都做了研究。具有阻挡层的器件除了显示更好的性能,外量子效率也达到 3.86% 。这些器件激发出的光的颜色强烈依赖于发光层的厚度和外加电压。这个技术的缺点是制备工艺复杂并且存在大量的有机材料的浪费,导致相对高的制造成本。
[/Ya4=C@ w$)E#|i 另一种从多层OLED器件中获得白光激发的途径是采用多量子井结构 [6] (图3),这种结构中包括两个或更多的被阻挡层分开的发光层。电子和空穴隧穿过阻挡层的势垒,均匀地分布到不同的量子井中发光。这个系统中不同有机材料的能级匹配要求不是很严格。激子在不同的井中形成,衰减,在它们自己的井中发出不同颜色的光。量子井对载流子的限制提高了激子形成的可能性,使激子不能移动到其他区域或把它的能量转移到其他区域。但是这种方法非常复杂,需要优化各种发光层和阻挡层的厚度。由于许多层组合厚度的原因,所以这种多层结构需要相对高的工作电压。
GFmVR2z_+ 图3 多层量子井结构的白光 OLED 结构示意图
2.1.2 施主 - 受主系统
#M5[TN! {nyVC%@Y 通过在宽带隙的施主材料中掺杂窄带隙的受主分子,激发能可以从高能施材料主隧穿到低能受主材料。在这样一个系统,如果掺杂浓度维持在某一个值后,可以使施主的发射可以忽略,而受主的发射占统治地位。在这种发射中,施主全部的能量都转移到受主中。这个系统还有一种可以选择的发射方式就是能量不全发生转移,这种方式中的发光同时来自与施主和受主区域。使施主和受主发的光达到一个合适的比例,就可以发出白光。产生白光的施主 - 受主系统既可以是在一个单层中或多层中的单一掺杂 [7] ,也可以是在单一层中或多层中的多种杂质掺杂 [8] 。为了获得稳定的白光,掺杂浓度是需要精确控制的。掺杂材料可以是自然界中的磷光或荧光材料,掺杂位置可以直接被激发或通过来自施主分子的能量 / 电荷传输来激发。
qwmZOR# mIUpAOC`"Z 2.1.3 单发射层结构的白光发射
dX>l"))yR XF=GmkO 上面讨论的器件的制备过程和发光是非常复杂的,为了得到更好的显色性和高的发光效率,许多参数还需要进行优化。由于几个被用来行使特定功能的有基层的堆叠,导致器件厚度增加,使器件必须有高的驱动电压。在白光有机发光二极管中,为了降低驱动电压,必须降低器件厚度。这些多层的复杂结构可以通过单层发光来解决。单层白光二极管发光器件只包含一个有机发光层。在一个含有蓝光发射有机层中掺杂不同的染料或混合两种或更多种聚合物,来得到白光已经被许多人报道过。只具有一个发光区的 OLED 器件相对与其他 OLED 器件所具有的最大的好处就是发出的光具有更好的颜色稳定性。但是这种方法的一个缺点就是由于不同掺杂材料之间具有不同的能量传输速度,最后导致颜色不平衡。高能的部分(蓝光)可以很容易地把能量传输到绿光和红光发射体,绿光发射体可以把能量传输给红光发射体。如果三种颜色的发射体浓度相同,最后红光会占主导地位。所以掺杂比例一定要蓝光>绿光>红光,并且需要达到很好的平衡。最近Shao等人 [9] 证明了使用均一施主单发光层的的白光 OLED具有很高的颜色稳定性。 D‘Andrade 等人 [7] 报道了只具有一个发光层的的白光 OLED 。发光层包含三种金属有机磷光掺杂材料: tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] 作为绿光发射体, iridium (III)bis(2-phenylquinolyl-N, C2 _ )(acetylacetonate) [PQIr] 作为红光发射体, iridium(III)bis(4 _ , 6 _ -difluorophenylpyridinato) tetrakis(1-pyrazolyl)borate [FIr6] 作为蓝光发射体。这三种材料同时共掺杂在宽带隙施主材料 p-bis(triphenylsilyly)benzene (UGH2) 中。这个白光 OLED 器件的最高 效率为 42lm/W ,显色指数为 80 ,最大外量子效率为 12% 。
q[T='!Z\ *3r{s'm 为了获得白光,染料不是必需的材料。聚合物的混合物也可以做到。最近 Gong 等人 [10] 使用 { PFO-ETM and PFO-F (1%) } 和 [Ir(HFP)3] 的混合物作为发光层,成功制备出了白光 OLED 器件。器件在 25V 时的发光强度达到了 10000cd 。
&