在
光纤中传播的每一个光波都由一个所谓的 信道来描述,该信道可以是一个 输入信道或ASE 信道,其特征在于
波长、耦合强度、传播方向等
参数。
pZv>{=2hOS 有两种不同的信道:
+Y - 输入信道允许注入光功率,例如泵浦功率或信号输入功率。它们有一定的波长,而且(名义上)没有带宽。 {a `#O9
- ASE 信道不能有输入。相反,它们由激发的增益介质提供荧光,当然,这也会受到激光增益和任何损耗的影响。 P<<hg3@
Htu}M8/4 在任何情况下,每个信道都有一个特定的传播方向,可以是 forward(值为 1 的预定义变量)或 backward(-1)。
DNN60NX 5Q V!94I2%#x 对于以后引用某个信道(例如检索其输出功率),每个信道在定义时都会获得一个 参考号 。例如,第三个定义的信道获得参考号 3。
O~WT$ &7CAxU;i3 在所有信道定义之后,必须调用函数 finish_fiber()。在此之前,不可能调用函数来计算光功率等。
J_=42aHO w0FkKJV 通常,所有信道都是在脚本的开头定义的,并且在计算过程中不进行修改,除了可以修改输入功率。但是,稍后可以通过使用函数 clearchannels()删除所有定义的信道,并再次使用函数定义所有信道来重新定义信道。这可能是可取的,例如,在最初使用较少的ASE 信道进行更近似(但更快)的计算后,最终绘图需要增加 ASE 信道的数量。
9M&uQccY 4pfv?!Oj 特别是在激光中,前向和后向传播信道相互耦合。
6-\ghPo /Ky xOb) 通常,光信道中的所有光功率在连续波计算中限制为1 mW,在动态计算中限制为5 mW。在
模拟体
设备时,这些限制可能是不需要的。在这种情况下,可以将变量 NoPowerLimit设置为非零值以抑制这些限制。
N$i|[>`j jZ8#86/#{ 输入信道用函数 addinputchannel()定义。例子:
17nONhh pump := addinputchannel(P_p_in, l_p, 'I_p', loss_p, backward)
`Ko6;s# *Bgk3(n) signal := addinputchannel(P_s_in, l_s, 'I_s', loss_s, forward)
%w YGI eZ^-gk? 变量 pump 和 signal 存储两个信道对应的参考号。我们得到一个参考号为1的反向传播泵浦信道和一个参考号为2的正向传播信号信道。这些值存储在变量中,以便以后访问信道(例如,用于检索功率或修改输入功率)。
J|z>5Z ~J Xqyw} (K(6`~ 函数 addinputchannel()的参数为:
X_0Ta_u?T - 输入功率,如正向传播信号的左光纤端面功率和反向传播泵的右光纤端面功率。
- 波长(单位:米)
- 指定模式强度横向依赖性的函数
- 背景损耗(单位:dB/m)(不包括掺杂剂吸收)
- 传播方向,可以是 forward 或 backward 9.
7XRxR^
rprtp5C g 模式分布函数(第三个参数)可以用不同的方式定义:
`T]1u4^E - 可以指定用户定义函数的名称(例如’I_s’),在大多数情况下,该函数只有一个参数 r,即径向坐标,但如果存在方位角依赖关系,它也可能依赖于 r 和 phi。如果使用函数 set_xy_steps()定义了矩形网格,则强度函数的参数必须是 x 和 y。
- 如果折射率分布已用 set_n_profile()定义,则还可以引用计算模式函数。例如,对于LP 01 模式,第三个参数可以是’I_lm(0,1)’,对于 cos(phi)依赖的 LP 11 模式,可以是’I_lm(1,1,cos)’。 rg^
- 另一种可能是在圆括号中指定参数,后面跟着一个任意的数学表达式。示例:’(r)exp(-2 * (r / w)^2)’ 0DFxVH_xN
RI
q9wD}4( 为以第一种方式定义的强度分布函数的示例,泵浦波如下:
ZKv^q%92 %;Dp~T`0 w_p := 5 um
] hxE^/8 7 P;#}@ /E I_p(r) := exp(-2 * (r / w_p)^2)
OEN!~-u +4,v.B@ 信道的输入功率稍后可以通过函数 set_P_in(ch, P)进行修改,其中第一个参数是信道号,
)OAd[u< nz=X/J6 第二个参数是新的输入功率。例子:
Z,~EH n2JwZ? calc set_P_in(pump, P_p)
`]{/(pIgW; Q]q`+ Z65 修改其他参数也有类似的函数:set_lambda(ch, l)修改波长,set_dlambda(ch, l)修改 ASE信道带宽,set_loss(ch, lo)修改寄生损耗。
l }i
. Y!8Ik(/~i ASE信道用函数 addASEchannel()定义。例子:
}BpCa6SAs Xy>+r[$D: ASE_fw := addASEchannel(l_s, 10e-9, 1, ’I_s’, 0, forward)
Q599@5aS ]y:ez8RFPU ASE_bw := addASEchannel(l_s, 10e-9, 1, ’I_s’, 0, backward)
%z(nZ%,Z $ 'B0ZL 结果值是信道参考号,与函数 addinputchannel()的方法相同。参数为:
)@
/!B` - 波长(单位:米)
- 带宽(单位:米) j5,vSh~q;'
- 空间模式的数量(例如,对于具有两个偏振方向的单模光纤,为 2 个) 0t-!6
- 指定模式强度径向依赖性的函数(有关详细信息,请参阅函数 addinputchannel()的说明) 39w|2%(O.
- 背景损耗(单位:dB/m) pD+_ K
- 传播方向 PN!NB.
`(r[BV|h} 模式强度的函数必须有一个参数 r(仅用于径向相关性)或两个参数 r 和 phi。
*)V1Sd#m b-1cA1#_cP ASE 信道没有输入,但由自发辐射提供。
d{UyiZm\
`@acQs;0 通常,为了正确地对整个 ASE 谱进行采样,有一个完整的 ASE 信道
阵列。下面给出了所用代码的示例:
eRK
kHd- w+P?JR!)+ l1_ASE := 960 nm { minimum ASE wavelength }
?3Ytn+Py rI\G&OqpP l2_ASE := 1080 nm { maximum ASE wavelength }
OIuEC7XM^C p/4\O dl_ASE := 5 nm { ASE bandwidth in m }
Sc!{
o!9\ A{5^A)$ defarray c_ASE_fw[l1_ASE, l2_ASE, dl_ASE]
z(AhO j0p'_|)( defarray c_ASE_bw[l1_ASE, l2_ASE, dl_ASE]
J!$q"0G'WT XNwZSW w_ASE := 5.5 um
gg>O:np8 t,*hxzD" l_s := 0
f_*Bd.@ `wJR^O!e I_ASE(r) := exp(-2 * (r / w_ASE)^2)
p nS{W
\Q NArql calc
o<*H!oyP\ v'"0Ya for l := l1_ASE to l2_ASE step dl_ASE do
B?qLXRv wt;7+ begin
'n7)()"2 c_ASE_fw[l] :=
l .8@F addASEchannel(l, dl_ASE, 1, 'I_ASE', l_s, forward);
d]JiJgfa% c_ASE_bw[l] :=
o1j_5c
PS addASEchannel(l, dl_ASE, 1, 'I_ASE', l_s, backward);
p#VA-RSUQ| end;
=K6aiP$Ft 这里,首先定义了 ASE 波长范围和各个 ASE 信道的宽度。然后定义两个数组来存储所有ASE 信道的参考号。最后,定义了信道。
wic&
$p/% Y <'T;@ 0] 'Bd`e