球面透镜整形器
参考Donald Dilworth《Lens Design Automatic and quasi-autonomous computational methods and techniques》书第十五章
首先选择工作目录C:\Synopsys\Dbook\
&3Mps[u:h Ijs=4f
然后,点击“Open MACro”按钮
,打开宏C15M1,该文件中的代码如下:
7`K)7 RLE !镜头输入文件起始点
yx/qp<= ID LASER BEAM SHAPER ! 镜头标识
S3YAc4 WA1 .6328 ! 定义单个波长,单位为um
#pX +~{ UNI MM !透镜单位为mm
Bh!J&SM: OBG .352 ! 使用OBG指令声明高斯光源,束腰半径为0.35mm,孔径大小为2倍的输入光束的1/e**2点
BsN~Z!kd 1 TH 22 ! 表面1和表面2之间的距离为22mm;表面1必须在束腰位置
.n)0@X! 2 RD -5 TH 2 GTB S ! 定义表面2的半径和厚度,以及玻璃类型为来自玻璃库Schott 的SF6
R]_fe4Y0 SF6
A*3R@G*h 3 UMC 0.3 YMT 5 ! UMC指令求解表面3的曲率,给定边缘光线的角度为0.3;
< nyk:E ! YMT指令求解在表面4上边缘光线高度为5mm时所对应的厚度;
r7N%onx 4 RD 20 TH 4 PIN 2 ! 定义表面4的半径和厚度,并拾取表面2的折射率
PX,fg5s\b 5 UMC 0 TH 50 ! UMC指令求解表面5的曲率,给定边缘光线的角度为0°,即光束被准直;表面5的厚度为50mm;
/M~rmIks 7 ! 定义表面6和表面7,且两表面必须平坦且重合,因为它们是AFOCAL输出
c# WIB 4 AFOCAL ! 设置系统无焦
NKw}VW'| END !结束镜头输入文件
点击PAD图标或在CW窗口输入SYNOPSYS AI>PAD,得到该透镜系统的二维图,如图1所示: 图1 粗略猜测用于激光束整形器的初始系统
|n.ydyu` 接下来,检查能量密度,通常有多种方法:
方法一:FLUX指令
I,!>ZG@6 CW窗口输入SYNOPSYSAI>FLUX100 P 3,然后点击“Enter”键。得到通过FLUX指令计算出的高斯强度分布引起的光通量衰减,如下图所示。
Z!qF0UDj FLUX100 P 3 的含义:
~uu~NTz 数字100-追迹的光线数目
%b`B.A 字母P-主波长
.@]M'S^1 数学3-表面3
方法二:FLUX像差
ak;S Ie 首先在CW中输入SYNOPSYSAI>STEP= 100,然后点击“Enter”键。
DR#[\RzNI Q@#Gm9m 然后运行宏C15M2一次,其代码为: >.#tNFAs
BcD%`vGJ DD:DO MACRO FOR AIP = -1 TO 1 ! 定义循环,设置特殊变量AIP来改变透镜数据
x$tzq+N COMPOSITE ! 定义复合像差
<2RxyoDL6 CD1 PFLUX 0 0 AIP 0 3 ! 使用CD1参数,计算表面3上AIP区域(循环变量)的光通量衰减
N_>}UhZ =CD1 ! 计算结果将自动放入文件夹FILE的位置1
6 0Obek` Z1 =FILE 1 ! 使用Z1变量参数,将文件夹FILE中位置1的结果置于Z1变量中;
M;qV%
k = 1 +Z1 ! 将1添加到结果中,这是总的光通量,因为Z1是衰减量。
'k[gxk|d2 ORD =FILE 1 ! 获取该值,并用于绘图的纵坐标,其横坐标为循环变量AIP
^o*$+DbC 64qQ:D7C 最后在CW中输入SYNOPSYSAI>DD,然后点击“Enter”键。
Fgg4QF 这样,就得到了高斯型光通量分布。 从图中可以看出,高斯型通量分布为OBG定义的1/e**2点的两倍。
&:)e
在PAD图中点击图标 按钮打开工作表,然后点击图标,再单击PAD图的右侧放置透镜。重复上述操作,为系统添加两个透镜,如图2所示。 图2 添加两个透镜后的系统结构
首先点击按钮设置检查点,然后运行优化宏C15M3,其代码为: t~"DQqE )BLoj:gYn CHG !改变透镜
)?PRG= NOP !移除所有表面拾取和求解
>~^##bIb 9UMC !UMC指令求解表面9的曲率
A)q,VSR8 END !结束
\ g[A{ Nm/Fc PANT ! 定义变量参数
k|T0Bly3P VLISTRAD ALL ! 改变所有表面半径
|1(9_=i' VLISTTH 3 5 6 7 8 ! 改变表面3,表面5,表面6,表面6,表面8的空气间隔
-d6*M*{| bwAL: END ! 结束
iP~dH/B|v wY j~ (P" AANT ! 定义像差参数
' ! ls"qo AEC 11 1 !自动控制边缘厚度,防止边缘太薄,目标值为1,权重为1,窗口为1
gJ>HFid_C ACC 41 1 !自动控制元件中心厚度,防止中心厚度太厚,目标值为4,权重为1,窗口为1
mDp|EXN ACA60 10 1 ! 自动控制临界角,防止光线超过临界角,导致光线失败
~0>{PD$@ LUL100 1 1 A TOTL ! 系统总长不超过100
M 510 A P YA 0 0 1 0 9 ! 0视场表面9上的边缘主光线高度目标值为5mm,权重为10
)ozN{&B6 M 510 A P YA 0 0 1 0 10 ! 0视场表面10上的边缘主光线高度目标值为5mm,权重为10
(&u)FB* M 0 1A P FLUX 0 0 1 0 10 ! 0视场表面10上在Y方向高度为1时所对应的光通量衰减为0
O(E-ox~q M 0 1A P FLUX 0 0 .99 0 10 ! 0视场表面10上在Y方向高度为0.99时所对应的光通量衰减为0
&c!=< <5M M 0 1A P FLUX 0 0 .98 0 10 ! 0视场表面10上在Y方向高度为0.98时所对应的光通量衰减为0
[0G>=h@u M 0 1A P FLUX 0 0 .97 0 10 ! 0视场表面10上在Y方向高度为0.97时所对应的光通量衰减为0
6Pa
jBEF M 0 1A P FLUX 0 0 .96 0 10 ! 0视场表面10上在Y方向高度为0.96时所对应的光通量衰减为0
2tqO%8`_ M 0 1A P FLUX 0 0 .95 0 10 ! 0视场表面10上在Y方向高度为0.95时所对应的光通量衰减为0
5&r2