香港科技大学研究团队提出双层全光学神经网络 可更快速识别图像
8月30日消息,港科大的研究团队提出了一种全光学神经网络,所有线性变换、激活函数通过光学模块就能实现。 ![]() 近日,来自香港科技大学的研究团队在《Optica》杂志上发表了一篇论文,详细描述了他们提出的双层全光学神经网络。这是一个功能完善的全光学神经网络(AONN),其中所使用的线性函数和非线性激活函数都是完全根据光学实现的。而且这种全光学神经网络还能扩展到更加复杂的神经网络架构,从而完成图像识别等更复杂的任务。 ![]() 在处理模式识别、风险管理以及其他同样复杂的任务时,最强大的计算机都无法与人脑匹敌。但是,近来光学神经网络取得的进展通过模拟人脑中神经元的反应方式缩小了计算机与人脑之间的差距。这种光学神经网络比 ML 中的网络能耗更低、运算更快,是未来大规模应用 AI 的坚实基础。 这个复杂的东西就是一个两层的全光学神经网络,它和机器学习中的两层全连接网络有点「类似」。 研究团队成员之一 Junwei Liu 表示:「我们提出的全光学神经网络能够以光速执行光学并行计算,并且耗能极少。这种大规模的全光学神经网络可应用于图像识别以及科学研究等诸多领域。」 港科大的全光学神经网络是什么? |