引力理论会失效?引力理论与量子理论相冲突之谜
自上世纪30年代以来,物理学家就知道,量子引力对建立自然法则秩序来说不可或缺。但80年过后,人们仍未找到解决方案。 据国外媒体报道,爱因斯坦的广义相对论已经有一百多年历史了,但仍令物理学家头痛不已。不仅因为爱因斯坦提出的等式极难解开,还因为该理论与另一项重大的物理学成就——量子理论相冲突。 问题在于,粒子都具有量子性质。例如,它们可以同时身处两地。这些粒子也拥有质量,有了质量就会有引力。但由于引力没有量子性质,我们无法弄清一个处于量子叠加态的粒子的引力大小。为解决这一问题,物理学家需要建立起“量子引力”理论;亦或者,既然爱因斯坦提出引力其实是时空的弯曲,物理学家需要为时间和空间的量子性质建立起一套理论。 即便对理论物理学家这样的高智商人群来说,这也是个非常困难的问题。自上世纪30年代以来,物理学家就知道,量子引力对建立自然法则秩序来说不可或缺。但80年过后,人们仍未找到解决方案。主要障碍在于实验指导的缺失。量子引力极为微弱,从未被人类探测到,因此物理学家只能依赖于数学,而在数学的迷宫中又极易迷失方向。 人们之所以难以获得量子引力的可观测迹象,主要因为目前所有可能开展的实验都不外乎两类:要么用又小又轻的物体测量量子效应,要么用又大又重的物体测量引力效应。在这两种情况下,量子引力效应都极其微弱。要想观察到量子引力效应,就需要利用一个沉重的、但又有显著量子性质的物体,而这种物体很难找到。 物理学家倒是知道几种具有较明显量子引力效应的天然事件,但研究起来也不容易。在能量密度很大、时空弯曲很强的情况下,其实并不存在非量子化的引力。这里要说清楚一点:天体物理学家所谓的“强”时空弯曲,对量子引力研究者而言仍然很“弱”。黑洞尤其如此:黑洞事件视界处的时空弯曲仍不够强,不足以产生显著的量子引力效应。 物理学家认为,只有在黑洞中央和宇宙大爆炸发生后不久,时空弯曲才能强到令广义相对论失效。在这两种情况下,被剧烈压缩的物质密度极高、且存在显著的量子行为,可以产生量子引力效应。但不幸的是,我们无法观察黑洞内部。要想通过目前的观测重建宇宙大爆炸当时的情况,也无法表现出量子引力行为。 要想产生显著的量子引力,应该还可以通过质心能量极高的粒子碰撞实现。如果有一台足够大的粒子对撞机(估测结果显示,按照现有技术,这台粒子对撞机需要有银河系那么大),你就可以把足够的能量集中在一小块空间上、从而产生足够强的时空弯曲。但这样一台对撞机可不是说造就造的。 除了强时空弯曲外,还有另一种引力的量子效应可以被观测到的情况,但这种情况常被人们忽视掉:创造沉重物体的量子叠加态。这会产生一种近似结果:物质具有了量子效应,但引力理论(即半经典限制)并不会失效,这样便能体现引力真正的量子效应。目前有几支实验团队正在尝试实现这一机制,也许能借此探测到上述效应。不过他们还差着好多个数量级,所以离真正成功仍有一定距离。 为何物理学家不对这种情况做进一步研究呢?很难解释科学家为什么想做某件事、却不去做另一件事。我们只能从理论角度猜测,这种情况也许并不是那么有趣。 前文说过,物理学家还没有量子引力理论,但这话并不全对。引力可以被量子化,上世纪60年代,理查德•费曼(Richard Feynman)和布莱斯•德维特(Bryce DeWitt)已经用普通的量子化方法进行了成功尝试。但通过这种方式获得的理论(微扰量子引力)在物理学家希望利用该理论的强弯曲机制中却会失效(微扰不可重正性)。因此,该理论如今仅被视作一种完整量子引力理论在低能量下的近似情况(有效理论)。 上世纪60年代时,几乎所有量子引力研究都着重于发展并完善该理论。其中最著名的尝试包括弦理论、圈量子理论、渐进安全、因果动力学三角剖分等等。然而,上述涉及到处于量子叠加态的沉重物体的情况都不包括强时空弯曲,因此也被归入了自上世纪60年代以来提出的一系列缺乏趣味、可能已得到充分理解的一类理论之中。讽刺的是,出于这种原因,人们几乎没有从上述任何一种角度出发、为这类实验提出过理论预测。 目前该领域的大多数学者都认为,微扰量子引力一定是任何量子引力理论的低能量下限。但也有少数人坚决表示反对,理由有如下几条。 |