半导体芯片生产主要分为 IC 设计、 IC 制造、 IC 封测三大环节。 IC 设计主要根据芯片的设计目的进行逻辑设计和规则制定,并根据设计图制作掩模以供后续光刻步骤使用。 IC 制造实现芯片电路图从掩模上转移至硅片上,并实现预定的芯片功能,包括光刻、刻蚀、离子注入、薄膜沉积、化学机械研磨等步骤。 IC 封测完成对芯片的封装和性能、功能测试,是产品交付前的最后工序。
qPPe)IM'Sc Qj^Uz+b LhL |ETrJ 芯片制造核心工艺主要设备全景图
Z!g6uV+.5 光刻是半导体芯片生产流程中最复杂、最关键的工艺步骤,耗时长、成本高。半导体芯片生产的难点和关键点在于将电路图从掩模上转移至硅片上,这一过程通过光刻来实现, 光刻的工艺水平直接决定芯片的制程水平和性能水平。芯片在生产中需要进行 20-30 次的光刻,耗时占到 IC 生产环节的 50%左右,占芯片生产成本的 1/3。
*^-AOSVt, VlV
X 光刻工艺流程详解
}#^Cj; $9G&
wH>{ 光刻的原理是在硅片表面覆盖一层具有高度光敏感性光刻胶,再用光线(一般是紫外光、深紫外光、极紫外光)透过掩模照射在硅片表面,被光线照射到的光刻胶会发生反应。此后用特定溶剂洗去被照射/未被照射的光刻胶, 就实现了电路图从掩模到硅片的转移。
KZ 5%q. 'C5id7O& 光刻完成后对没有光刻胶保护的硅片部分进行刻蚀,最后洗去剩余光刻胶, 就实现了半导体器件在硅片表面的构建过程。
':n`0+Eh |S!RQ-CF 光刻分为正性光刻和负性光刻两种基本工艺,区别在于两者使用的光刻胶的类型不同。负性光刻使用的光刻胶在曝光后会因为交联而变得不可溶解,并会硬化,不会被溶剂洗掉,从而该部分硅片不会在后续流程中被腐蚀掉,负性光刻光刻胶上的图形与掩模版上图形相反。
<H^jbK v6 5C
j2ec s, Gl{ 在硅片表面构建半导体器件的过程
AMyg>n! 正性光刻与负性光刻相反,曝光部分的光刻胶会被破坏从而被溶剂洗掉,该部分的硅片没有光刻胶保护会被腐蚀掉,正性光刻光刻胶上的图形与掩模版上图形相同。
*q6XK_ :Q`Of}# _}5vO$kdO 正性光刻与负性光刻对比
xUn"XkhP 1)气相成底膜
boojq{cvYA 4v_Ac;2m& 硅片在清洗、烘培后首先通过浸泡、喷雾或化学气相沉积(CVD)等工艺用六甲基二胺烷成底膜,底膜使硅片表面疏离水分子,同时增强对光刻胶的结合力。底膜的本质是作为硅片和光刻胶的连接剂,与这些材料具有化学相容性。
lrE"phYk j-9)Sijj{ 2)旋转涂胶
"1,*6(;: ]he~KO[j< HR-'8?)R.A 旋转涂胶步骤
KPToyCyR1 形成底膜后,要在硅片表面均匀覆盖光刻胶。此时硅片被放置在真空吸盘上,吸盘底部与转动电机相连。当硅片静止或旋转的非常缓慢时,光刻胶被分滴在硅片上。随后加速硅片旋转到一定的转速,光刻胶借助离心作用伸展到整个硅片表面,并持续旋转甩去多余的光刻胶,在硅片上得到均匀的光刻胶胶膜覆盖层,旋转一直到溶剂挥发,光刻胶膜几乎干燥后停止。
]$g07 7o nVs@DH /bykIUTKI 涂胶设备
obvE m[x!Z 3)软烘
BvP\c_ 涂完光刻胶后,需对硅片进行软烘,除去光刻胶中残余的溶剂,提高光刻胶的粘附性和均匀性。未经软烘的光刻胶易发粘并受颗粒污染,粘附力会不足,还会因溶剂含量过高导致显影时存在溶解差异,难以区分曝光和未曝光的光刻胶。
@1oX $z_yx
`5 4)曝光
20}HTV{v 5M=U*BI 曝光过程是在硅片表面和石英掩模对准并聚焦后,使用紫外光照射,未受掩模遮挡部分的光刻胶发生曝光反应,实现电路图从掩模到硅片上的转移。
i"V.$|, 4ior 5)显影
yhKH}
kR ?;RY/[IX6 &>AwG4HW#j 光刻原理图
;y(;7n_ a 使用化学显影液溶解由曝光造成的光刻胶可溶解区域, 使可见图形出现在硅片上,并区分需要刻蚀的区域和受光刻胶保护的区域。显影完成后通过旋转甩掉多余显影液,并用高纯水清洗后甩干。
J=-z~\f56 J!om"h L"jA#ULg 显影过程示意图
'ayb` 6)坚膜
o%'1=d3R1Q 0f5 ag& 显影后的热烘叫做坚膜烘培,温度比软烘更高,目的是蒸发掉剩余的溶剂使光刻胶变硬,提高光刻胶对硅片表面的粘附性,这一步对光刻胶的稳固,对后续的刻蚀等过程非常关键。
]0> vEfj3+e 7)检测
Lyc6nP;F
+2{ f>KZ 对硅片的显影结果进行检测,合格的硅片进入后续的刻蚀等流程,不合格的硅片在清洗后进入最初流程。
B=]j=\o 6 ZRc|ZQ 8)刻蚀
F`4W5~` :Fhk$?/r 刻蚀是通过化学或物理的方法有选择地从硅片表面除去不需要材料的过程,通过刻蚀能在硅片上构建预想的电子器件。
:WRD<D_4 &S(>L[)9 ,Mw93Kp
Va 干法(物理)、湿法(化学)刻蚀原理示意图
VKPEoy8H 刻蚀分为干法刻蚀和湿法刻蚀两种。干法刻蚀是将硅片表面暴露在惰性气体中,通过气体产生的等离子体轰击光刻胶开出的窗口,与硅片发生反应去掉暴露的表面材料,是亚微米尺寸下刻蚀器件的最主要方法。湿法刻蚀使用液态化学剂(酸、碱、有机溶剂等)用化学方式去
9"^ib9M $*eYiz3Ue 除硅片表面的材料,一般只用于尺寸较大的情况。
f2c<-}wR A_TaXl( 9)去胶
s O#cJAfuu U LS>v 刻蚀完成后,通过特定溶剂,洗去硅片表面残余的光刻胶。
{-I+ <6;M\:Y*T 光刻机: 半导体制造业皇冠上的明珠
$Z;8@O3 {*;8`+R& 光刻机根据应用工序不同,可以分为用于生产芯片的光刻机,以及用于封装的光刻机,其中封装光刻机对于光刻精度和控制精度的要求都比制造用光刻机低很多,价值量也相对较低,本文主要讨论用于芯片制造领域的光刻机。
qcO~}MJr}^ _1?u AQ3, 光刻机是芯片制造中光刻环节的核心设备, 技术含量、价值含量极高。 光刻机涉及系统集成、精密
光学、精密运动、精密物料传输、高精度微环境控制等多项先进技术,是所有半导体制造设备中技术含量最高的设备,因此也具备极高的单台价值量,目前世界上最先进的 ASML EUV光刻机单价达到近一亿欧元,可满足 7nm 制程芯片的生产。
WzFXF{( mW]dhY 3X 光刻机工作原理:光刻机通过一系列的
光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。 不同光刻机的成像比例不同,有 5:1,也有 4:1。 光刻机内部结构图如图 9 所示。
KAZ<w~55c l1]N&jN{ ;R6f9tu2 光刻机工作原理图
U~=?I)Ni 光刻机的内部组件如下:
FV9{u[3m HIw)HYF2 激光器:光源,光刻机核心设备之一。
`.;U)}Tn u)h
{"pP 光束矫正器:矫正光束入射方向,让激光束尽量平行。
;q'-<O ,JI] Eij^ 能量控制器:控制最终照射到硅片上的能量,曝光不足或过足都会严重影响成像质量。
\
C:Gx4K *Z"cXg^ti 光束形状设置:设置光束为圆型、环型等不同形状,不同的光束状态有不同的光学特性。
\X\< +KU D?y-Y
遮光器:在不需要曝光的时候,阻止光束照射到硅片。
dlvU=^G#G *
4J!@w 能量探测器:检测光束最终入射能量是否符合曝光要求,并反馈给能量控制器进行调整。
8L:AmpQdpA D)G oWt 掩模版:一块在内部刻着线路设计图的玻璃板,贵的要数十万美元。
J8\l'}?& $`UdG0~ 掩膜台:承载掩模版运动的设备,运动控制精度达到
纳米级。
^}2!fRKAmo >A{e,&