切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
  • 深度学习光学设计和计算光学成像

    来源:投稿 时间:2024-08-01 17:52 阅读:712 [投稿]
    深度学习在光学设计领域的应用为光子学结构的创新提供了新的机遇和挑战。未来,随着深度学习技术的不断发展和完善,相信它将在光学设计领域发挥更加重要的作用。

    在探索光学成像技术的无限可能时,深度学习计算光学成像正逐步成为科研与应用的热点。传统光学成像技术虽已成熟,但其成像质量受限于物理原理,如衍射极限和像差等难题,难以进一步突破。而计算成像技术的兴起,结合数学与信号处理的知识,为光学成像开辟了新的道路。深度学习作为近年来迅速发展的技术,凭借其强大的数据处理和特征提取能力,为计算光学成像注入了新的活力。

    深度学习计算光学成像的研究背景深厚,它旨在通过算法优化来解决传统光学成像中的难题,提升成像质量。这一领域融合了光学、计算机科学、数学等多个学科的知识,通过深度学习模型对光场信息进行多维度获取、编码与处理,从而突破传统成像的局限。

    展望未来,深度学习计算光学成像的前景广阔。它不仅能够进一步提升成像分辨率,降低噪声,实现超分辨率成像,还能通过算法优化简化成像系统的硬件设备,降低成本。同时,其强大的环境适应性将使成像系统能够在各种复杂环境中保持稳定的性能,为医疗、无人驾驶、遥感监测等领域提供有力支持。随着跨学科融合的深入和技术的不断进步,我们有理由相信,深度学习计算光学成像将在未来发挥更加重要的作用,引领成像技术的新一轮革命。

    01深度学习光学设计(光网络与逆向设计)专题

    02 深度学习计算光学成像专题

    深度学习光学设计讲师介绍

    主讲老师团队来自全国重点大学、国家“985工程”物理与信息交叉学科专业,有多年的机器学习和课题组科研经历!研究方向涉及光学设计与物理学,深度学习,机器学习等交叉领域。有着丰富知识积累和实战经验。参与国自然科学基金项目多项等,包括发表SCI论文十余篇,国家发明专利一项!担任过MDPI旗下等多个期刊的审稿人。

    深度学习计算光学成像讲师介绍

    主讲老师来自国外光学成像顶尖高校,擅长计算机视觉与深度学习成像研究。近年来发表SCI论文15篇,授权三项发明专利。研究方向包括:图像处理与计算机视觉、深度学习方法、物理驱动的光学成像、跨模态成像研究等。

    深度学习光学设计(光网络与逆向设计)目标

    1.基于深度学习的光网络的培养目标主要集中在培养具备现代光学理论基础和深度学习技术知识的高级专业人才。他们不仅需要熟悉现代光学的原理,还需要掌握深度学习算法的原理和应用,能够结合深度学习和现代光学原理设计出具有光学加速功能的器件。 

    2. 初步掌握构建深度学习模型所需的使用的工具,学会搭建深度学习开发环境。让初学者能够使用深度学习框架搭建常用神经网络模型,了解模型训练过程中出现的问题并掌握常用的解决办法。 

    3. 熟悉超材料的发展现状,基本掌握多物理场仿真软件,并能够使用该软件计算光子晶体 的能带并对仿真结果做后处理。了解超表面在光学以及量子领域方面的应用,学会使用仿真软件对超表面结构进行仿真以及后续的结果分析。

    4. 知道MATLAB与COMSOL以及Python间的交互方式,学会使用 Python处理COMSOL导出的数据,了解如何使用 MATLAB 将 COMSOL 的数据导出并处理为 Python 能读取的数据。 

    5. 了解硅基光网络的发展现状,知道矩阵分解的原理,学会使用深度学习框架去搭建一个基于MZI的模型框架并将其应用在深度学习实例上。 

    6. 未来利用光的加速功能,基于片上的光网络可以设计出具有加速功能的光芯片。基于衍射网络,则可以在自由空间上设计出快速成像系统,加速自动驾驶的图像识别。 

    7. 利用深度学习模型,可以克服传统基于全波模拟的设计方法的劣势,可以快速给出给定 结构的目标响应,加速光学设计的过程。 

    深度学习计算光学成像目标

    1.掌握典型光学成像机理,了解其对应的数学模型及需求解的问题。

    2.掌握典型的最优化理论及方法,能够通过设计目标函数求解典型的计算成像逆问题。

    3.掌握深度学习算法的原理和应用,能够通过python编程实现典型的深度网络模型的部署和修改,并用于解决典型的计算光学成像问题。

    深度学习光学设计

    第一天

    第一章 导论 

    第一节 深度学习与光网络综述 

    1.1 衍射神经网络 

    1.2 片上集成光学神经网络 

    第二节 深度学习与超表面反向设计综述 

    第三节 光网络与超表面反向设计的挑战 

    第四节 光网络与超表面反向设计未来的发展趋势 

    第二章 软件基础知识(实操) 

    第一节 Python 环境的搭建 

    1.1 Anaconda 、Numpy、Matplotlib 和 Pandas 安装 

    1.2 虚拟环境的搭建以及 Pytorch 安装 

    1.3 Pytorch GPU 版本的安装 

    第二节 Python 的基础教程 

    2.1 Python 常见的数据结构与数据类型 

    2.2 Numpy 基础教程 

    2.3 Pandas 基础教程 

    2.4 Matplotlib 基础教程 

    第三节 Pytorch 基本教程 

    3.1 数据操作 

    3.2 数据预处理 

    3.3 线性代数

    图片

    第二天

    第三章 深度学习 

    第一节 机器学习 

    第二节 机器学习中的关键组件 

    2.1 数据 

    2.2 模型 

    2.3 损失函数 

    2.4 优化算法 

    第三节 机器学习的分类 

    3.1 监督学习 

    3.2 无监督学习 

    3.3 半监督学习 

    3.4 强化学习 

    3.5 迁移学习 

    第四节 深度学习 

    4.1 深度学习的发展历程 

    4.2 深度学习的进展 

    4.3 人工神经网络 

    第四章 深度学习模型(实操) 

    第一节 线性神经网络实例 

    1.1 线性回归 

    1.2 softmax 回归 

    第二节 多层感知机实例 

    2.1 多层感知机 

    2.2 模型选择、欠拟合和过拟合 

    2.3 权重衰减 

    2.4 Dropout 

    第三节 卷积神经网络实例 

    3.1 从全连接层到卷积 

    3.2 通道和汇聚层 

    3.3 卷积神经网络(LeNet) 

    3.4 批量归一化 

    3.5 残差连接 

    第四节 循环神经网络实例

    4.1 序列模型 

    4.2 语言模型和数据集 

    4.3 循环神经网络 

    第五节 生成对抗网络实例 

    5.1 概率生成模型 

    5.2 变分自编码器 

    5.3 生成对抗网络

    图片图片

    第三天

    第五章 超材料 

    第一节 超材料概述 

    第二节 光子晶体(COMSOL 实际操作) 

    2.1 光子晶体基础和应用 

    2.2 传递矩阵方法求解一维光子晶体能带 

    2.3 平面波展开法求解一维光子晶体能带 

    2.4 有限元法求解光子晶体能带 

    2.4.1 二维正方晶格能带 

    2.4.2 二维正方晶格光子晶体板能带 

    2.4.3 二维三角晶格光子晶体板能带 

    2.4.4 二维六角晶格光子晶体板能带 

    2.5 光子晶体板中的连续谱束缚态(BIC)及其拓扑荷的计算 

    第三节 超表面在光场调控中的作用 

    3.1 相位调控 

    3.2 光强调控 

    3.3 偏振调控 

    3.4 频率调控 

    3.5 联合调控 

    第四节 超表面仿真实例(COMSOL 实际操作) 

    3.1 频率选择表面周期性互补开口谐振环 

    3.2 超表面光束偏折器 

    第五节 超构表面在量子光学中的研究与应用 

    5.1 量子等离激元 

    5.2 量子光源 

    5.3 量子态的测量与操纵 

    5.4 量子光学的应用 

    第四天

    第六章 基于马赫-增德尔干涉仪的光计算 

    第一节 光计算及光神经网络的简介 

    1.1 光计算的背景介绍 

    1.2 光神经网络的发展与分类 

    1.3 光神经网络的研究现状 

    第二节 基于 MZI 的光神经网络原理 

    2.1 全连接神经网络原理讲解 

    2.2 MZI 级联的相干光矩阵计算原理 

    2.3 N 阶酉矩阵分解 

    2.4 基于 MZI 拓扑级联的酉矩阵通用架构 

    第三节 训练数据集的获取与处理(Python 实操) 

    3.1 Python 程序环境安装 

    3.2 Pycharm 主要功能介绍 

    3.3 数据集的获取方法 

    3.4 训练数据集的前期处理 

    第四节 酉矩阵通用架构的搭建(Python 实操) 

    4.1 二阶酉矩阵的搭建 

    4.2 clement 架构的搭建 

    第五节 光神经网络的模型运行(Python 实操) 

    第五天

    第七章 全光衍射神经网络 

    第一节 标量衍射理论基础 

    1.1 惠更斯-菲涅耳原理 

    1.2 瑞利-索莫菲衍射公式 

    1.3 衍射角谱理论 

    1.4 离散傅里叶变换 

    第六节 光学衍射神经网络(Python 实操) 

    2.1 人工神经网络结构 

    2.2 光学衍射神经网络结构 

    2.3 光学衍射神经网络实现手写数字识别 

    2.4 光学衍射神经网络的应用 

    第八章 超材料反向设计实例 

    第一节 基于神经网络方法实现全介质超表面的设计(COMSOL 实操) 

    1.1 超表面元的模拟 

    1.2 超表面元的参数提取 

    1.3 训练数据集的搭建 

    1.4 预测模型的训练 

    第二节 CNN 和 RNN 的组合寻找等离子体结构的光学特性(COMSOL 实操) 

    第三节 DELAY 强化学习算法实现激光器的自动锁模控制 

    深度学习计算光学成像专题

    第一天:

    第一章:光学成像基础

    第一节:绪论

    1.什么是光学成像?

    2.光学成像进展

    第二节:光学成像重要属性

    1.物距、焦距、空间带宽乘积

    2.分辨率、视场、景深

    3.球差、慧差、场曲、畸变、色差、像差

    4.点扩散函数、调制传递函数

    第三节:成像质量评价指标

    1.全参考评价

    2.半参考评价

    3.无参考评价

    第四节:光学成像发展趋势

    1.功能拓展 (相位、三维、非视距、穿云透雾、遥感)

    2.性能改善(视场大小、分辨率、成像速度)

    3.系统优化(小型化、廉价化、高效制造)

    第二章:典型计算成像

    第一节:计算机断层扫描(CT)成像

    1.基本原理(X射线投影与探测)

    2.基于深度学习的计算重建

    3.技术进展与应用

    第二节:压缩感知成像

    1.稀疏表示与测量

    2.典型重建算法与优化

    3.压缩感知成像计算重建

    4.应用与发展趋势

    第三节:编码孔径成像

    1.编码孔径设计原理

    2.成像系统特性与优势

    3.基于深度学习的图像重建

    4.典型应用概述

    分享到:
    扫一扫,关注光行天下的微信订阅号!
    【温馨提示】本频道长期接受投稿,内容可以是:
    1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
    如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn
    文章点评