高精度三维光子晶体超快激光加工新方法
北京理工大学姜澜教授和清华大学闫剑锋副教授等在超快激光加工光子晶体方面取得研究进展,利用超快激光多光束在晶体材料内部实现了超衍射极限的三维光子晶体结构高精度加工。
近日,北京理工大学姜澜教授和清华大学闫剑锋副教授等在超快激光加工光子晶体方面取得研究进展,利用超快激光多光束在晶体材料内部实现了超衍射极限的三维光子晶体结构高精度加工。 相关成果以“Nanoscale Multi Beam Lithography of Photonic Crystals with Ultrafast Laser”发表在Light: Science & Applications,论文作者为李佳群,闫剑锋,姜澜等。 光子晶体结构具有卓越的控光性能,是光子学与光电子学领域的研究热点。光子晶体的控光性能与其晶格常数息息相关,通常要求晶格常数与工作波段处于同一数量级。在晶体材料中,光子晶体结构由介电常数不同于晶体本身的单元在空间上周期性排列而成,其晶格常数取决于单元本身尺寸与相邻单元的间隙。因此,为实现近红外与可见光波段的光控制,需要将光子晶体单元结构与间隙精确地控制在百纳米尺度。 飞秒激光可直接在透明介质材料内部实现三维微纳结构的制备,是在晶体材料中构筑光子晶体结构的最佳途径之一。然而,现有的光子晶体飞秒激光加工技术通常采取单束逐点扫描策略,受到加工轨迹前后重叠与运动控制精度的影响,在纳米尺度的单元结构制备上存在限制。微透镜阵列加工技术与激光干涉加工技术通过并行方式在一定程度上为上述问题提供了解决方案。然而前者的灵活性不足,针对不同的目标结构需要设计并制备不同的微透镜阵列。后者尽管具备较高的灵活度,但通常只能用来加工平面二维结构,缺乏三维定制能力。因此,面向晶体内部纳米尺度三维空间光子晶体结构的制备,新的飞秒激光加工技术亟待发展。 实现纳米尺度光子晶体结构的飞秒激光加工的核心问题是如何精确控制相邻单元结构的间隙,同时避免传统单束激光由于光斑轨迹重叠所产生的二次加工效应。 本文创新地将三维空间分布可控的多光束光场紧聚焦在晶体内部结合化学刻蚀构筑光子晶体单元,提出了一种基于纳米尺度飞秒激光多光束光刻的光子晶体结构加工方法(图1左):一方面通过光场相位设计与紧聚焦方法可将加工结构单元尺寸与间隙控制在亚波长量级;一方面借助多光束光场以光控代替电控,可有效规避单束激光加工存在的光斑重叠与光机元件运动精度问题。 图1. 在晶体内部结合化学刻蚀构筑三维空间分布可控的光子晶体结构。(左)飞秒激光多光束光场整形与紧聚焦;(右)亚波长尺度的光子晶体结构单元加工与光栅器件制备。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn