清华大学与中科院团队合作开发新型智能显微成像技术
提出了一套合理化深度学习显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建。
合理化深度学习超分辨显微成像方法能够适用于包括二维/三维结构光照明显微镜(2D/3D-SIM)、晶格光片显微镜(LLSM)等在内的多种显微成像模态,提供高分辨率、高保真的显微图像重建性能,相较于传统方法大幅提升成像时程和速度。借助合理化深度学习超分辨成像技术,研究团队进行了诸多过去的成像手段无法开展的超分辨活体成像实验,包括以下五项实验。 对滴落在玻片上的U2OS细胞贴壁生长过程进行了双色、长时程(1小时以上)、超分辨(97nm分辨率)观测,清晰、真实地记录了细胞粘附和迁移的动力学现象,而不会干扰这一漫长、脆弱的生命过程;对高速摆动纤毛以当前最快的684Hz成像速率进行了长达60,000个时间点的连续超分辨观测,过程中无明显光漂白或细胞活性损伤;同时对摆动纤毛及纤毛内转运蛋白(IFT)进行了超快、超分辨双色成像,首次揭示了IFT在行进途中碰撞、重组、掉头等多种新行为;通过对与DNA结合的循环GMP-AMP合成酶(cGAS-DNA)与内质网(ER)进行双色、长时程、超分辨成像,观测到cGAS-DNA在保持与内质网持续接触过程中的定向运动、转向或扩散等行为,拓展了对膜性细胞器与无膜细胞器相互作用机制的认知;对HeLa 细胞分裂过程中的核仁磷酸蛋白(NPM1)、RNA聚合酶I亚基RPA49以及染色质(H2B)进行超长时程(12秒采集间隔,2.5小时以上)的三维超分辨活体成像,首次实现了对完整有丝分裂过程中核仁磷酸蛋白与RPA49两种结构形态变化的三维超分辨活体连续观测,揭示了细胞有丝分裂过程中核仁形成以及核仁磷酸蛋白、RPA49两种无膜亚细胞结构的相变、互作规律;以10Hz的全细胞体成像帧率对高尔基体进行了长达10,000时间点的连续拍摄,并实现了对完整细胞分裂过程内质网、溶酶体、线粒体等亚细胞结构的三色、高速(秒量级)、超长时程(小时量级,>1000个时间点)三维观测,深入探究了细胞有丝分裂过程中细胞器在子代细胞中的均匀分配机制。 近日,上述成果在《自然·生物技术》(Nature Biotechnology)期刊发表题为“基于合理化深度学习超分辨显微成像的快速、长时程活体亚细胞过程观测”(Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes)的论文。《自然·生物技术》杂志以封面文章的形式对这一研究成果进行报道,同时发表了《研究简述》(Research Briefing)文章对其重点介绍。 清华大学自动化系博士后乔畅,中国科学院生物物理所正高级工程师李迪、助理研究员刘勇、张思微为该论文共同第一作者,清华大学自动化系教授戴琼海,中国科学院生物物理所研究员李栋和霍华德休斯医学研究所研究员詹妮弗·利平科特-施瓦茨(Jennifer Lippincott-Schwartz)为共同通讯作者。 该研究得到国家自然科学基金委、科技部、中国科学院、中国博士后科学基金、腾讯“科学探索奖”、清华大学“水木学者”计划的资助。 |
1.行业新闻、市场分析。 2.新品新技术(最新研发出来的产品技术介绍,包括产品性能参数、作用、应用领域及图片); 3.解决方案/专业论文(针对问题及需求,提出一个解决问题的执行方案); 4.技术文章、白皮书,光学软件运用技术(光电行业内技术文档);
如果想要将你的内容出现在这里,欢迎联系我们,投稿邮箱:service@opticsky.cn